These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22708624)

  • 21. Miniaturizing nanoantennas with hybrid photonic-plasmonic modes for improved metasurfaces.
    Chachamovitz Y; Bartal G
    Opt Lett; 2020 Sep; 45(17):4871-4874. PubMed ID: 32870879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.
    Blanchard R; Boriskina SV; Genevet P; Kats MA; Tetienne JP; Yu N; Scully MO; Dal Negro L; Capasso F
    Opt Express; 2011 Oct; 19(22):22113-24. PubMed ID: 22109055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective bright and dark mode excitation in coupled nanoantennas.
    Lee S; Park Y; Kim J; Roh YG; Park QH
    Opt Express; 2018 Aug; 26(17):21537-21545. PubMed ID: 30130860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy.
    Li GC; Zhang YL; Lei DY
    Nanoscale; 2016 Apr; 8(13):7119-26. PubMed ID: 26962966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis.
    Benedetti A; Centini M; Bertolotti M; Sibilia C
    Opt Express; 2011 Dec; 19(27):26752-67. PubMed ID: 22274259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A single particle plasmon resonance study of 3D conical nanoantennas.
    Schäfer C; Gollmer DA; Horrer A; Fulmes J; Weber-Bargioni A; Cabrini S; Schuck PJ; Kern DP; Fleischer M
    Nanoscale; 2013 Sep; 5(17):7861-6. PubMed ID: 23846476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances.
    Fischer J; Vogel N; Mohammadi R; Butt HJ; Landfester K; Weiss CK; Kreiter M
    Nanoscale; 2011 Nov; 3(11):4788-97. PubMed ID: 21952954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling.
    Wang Y; Abb M; Boden SA; Aizpurua J; de Groot CH; Muskens OL
    Nano Lett; 2013; 13(11):5647-53. PubMed ID: 24127754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas.
    Coenen T; Vesseur EJ; Polman A
    ACS Nano; 2012 Feb; 6(2):1742-50. PubMed ID: 22230686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid modes in a single thermally excited asymmetric dimer antenna.
    Abou-Hamdan L; Li C; Haidar R; Krachmalnicoff V; Bouchon P; De Wilde Y
    Opt Lett; 2021 Mar; 46(5):981-984. PubMed ID: 33649637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas.
    Abb M; Wang Y; de Groot CH; Muskens OL
    Nat Commun; 2014 Sep; 5():4869. PubMed ID: 25189713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling.
    Jin XR; Park J; Zheng H; Lee S; Lee Y; Rhee JY; Kim KW; Cheong HS; Jang WH
    Opt Express; 2011 Oct; 19(22):21652-7. PubMed ID: 22109014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods.
    Auguié B; Alonso-Gómez JL; Guerrero-Martínez A; Liz-Marzán LM
    J Phys Chem Lett; 2011 Apr; 2(8):846-51. PubMed ID: 26295617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of electric currents in the Fano resonances of connected plasmonic structures.
    Riccardi M; Martin OJF
    Opt Express; 2021 Apr; 29(8):11635-11644. PubMed ID: 33984940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Demonstration of scattering suppression in retardation-based plasmonic nanoantennas.
    Nielsen MG; Pors A; Nielsen RB; Boltasseva A; Albrektsen O; Bozhevolnyi SI
    Opt Express; 2010 Jul; 18(14):14802-11. PubMed ID: 20639967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of single emitter radiation by polarization- and position-dependent activation of dark antenna modes.
    Schmidt MK; Mackowski S; Aizpurua J
    Opt Lett; 2012 Mar; 37(6):1017-9. PubMed ID: 22446209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.
    Giannini V; Berrier A; Maier SA; Sánchez-Gil JA; Rivas JG
    Opt Express; 2010 Feb; 18(3):2797-807. PubMed ID: 20174108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dark and bright localized surface plasmons in nanocrosses.
    Verellen N; Van Dorpe P; Vercruysse D; Vandenbosch GA; Moshchalkov VV
    Opt Express; 2011 Jun; 19(12):11034-51. PubMed ID: 21716332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unidirectional broadband radiation of honeycomb plasmonic antenna array with broken symmetry.
    Tok RU; Ow-Yang C; Sendur K
    Opt Express; 2011 Nov; 19(23):22731-42. PubMed ID: 22109154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance.
    Lu Y; Rhee JY; Jang WH; Lee YP
    Opt Express; 2010 Sep; 18(20):20912-7. PubMed ID: 20940986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.