BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22708961)

  • 21. Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis.
    Oggioni MR; Trappetti C; Kadioglu A; Cassone M; Iannelli F; Ricci S; Andrew PW; Pozzi G
    Mol Microbiol; 2006 Sep; 61(5):1196-210. PubMed ID: 16925554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The galU gene expression in Streptococcus pneumoniae.
    Bonofiglio L; García E; Mollerach M
    FEMS Microbiol Lett; 2012 Jul; 332(1):47-53. PubMed ID: 22507173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sigma X induces competence gene expression in Streptococcus pyogenes.
    Woodbury RL; Wang X; Moran CP
    Res Microbiol; 2006 Nov; 157(9):851-6. PubMed ID: 16963231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic changes in the Streptococcus pneumoniae transcriptome during transition from biofilm formation to invasive disease upon influenza A virus infection.
    Pettigrew MM; Marks LR; Kong Y; Gent JF; Roche-Hakansson H; Hakansson AP
    Infect Immun; 2014 Nov; 82(11):4607-19. PubMed ID: 25135685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic analysis of the copper resistance of Streptococcus pneumoniae.
    Guo Z; Han J; Yang XY; Cao K; He K; Du G; Zeng G; Zhang L; Yu G; Sun Z; He QY; Sun X
    Metallomics; 2015 Mar; 7(3):448-54. PubMed ID: 25608595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome changes at the initiation of elongation in the bovine conceptus.
    Clemente M; Lopez-Vidriero I; O'Gaora P; Mehta JP; Forde N; Gutierrez-Adan A; Lonergan P; Rizos D
    Biol Reprod; 2011 Aug; 85(2):285-95. PubMed ID: 21508349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa.
    Herzberg M; Elimelech M
    ISME J; 2008 Feb; 2(2):180-94. PubMed ID: 18049459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of growth-phase-dependent gene expression in virulent and avirulent Streptococcus pneumoniae using a high-density DNA microarray.
    Ko KS; Park S; Oh WS; Suh JY; Oh T; Ahn S; Chun J; Song JH
    Mol Cells; 2006 Feb; 21(1):82-8. PubMed ID: 16511350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling.
    Resch A; Leicht S; Saric M; Pásztor L; Jakob A; Götz F; Nordheim A
    Proteomics; 2006 Mar; 6(6):1867-77. PubMed ID: 16470655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic analysis of Moraxella catarrhalis and the effect of selected in vitro growth conditions on global gene expression.
    Wang W; Reitzer L; Rasko DA; Pearson MM; Blick RJ; Laurence C; Hansen EJ
    Infect Immun; 2007 Oct; 75(10):4959-71. PubMed ID: 17620351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus.
    Tremblay YD; Deslandes V; Jacques M
    BMC Genomics; 2013 May; 14():364. PubMed ID: 23725589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells.
    Guilhen C; Charbonnel N; Parisot N; Gueguen N; Iltis A; Forestier C; Balestrino D
    BMC Genomics; 2016 Mar; 17():237. PubMed ID: 26979871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors.
    Ng WL; Kazmierczak KM; Robertson GT; Gilmour R; Winkler ME
    J Bacteriol; 2003 Jan; 185(1):359-70. PubMed ID: 12486074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of Salmonella typhimurium pyr gene expression: effect of changing both purine and pyrimidine nucleotide pools.
    Jensen KF
    J Gen Microbiol; 1989 Apr; 135(4):805-15. PubMed ID: 2689594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyaluronic acid derived from other streptococci supports Streptococcus pneumoniae in vitro biofilm formation.
    Yadav MK; Chae SW; Park K; Song JJ
    Biomed Res Int; 2013; 2013():690217. PubMed ID: 24171169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth.
    Ojha A; Hatfull GF
    Mol Microbiol; 2007 Oct; 66(2):468-83. PubMed ID: 17854402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells.
    Charlebois A; Jacques M; Archambault M
    Avian Pathol; 2016 Oct; 45(5):593-601. PubMed ID: 27207477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pronounced metabolic changes in adaptation to biofilm growth by Streptococcus pneumoniae.
    Allan RN; Skipp P; Jefferies J; Clarke SC; Faust SN; Hall-Stoodley L; Webb J
    PLoS One; 2014; 9(9):e107015. PubMed ID: 25188255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of Streptococcus pneumoniae non-phase-variable colony variants is due to increased mutation frequency present under biofilm growth conditions.
    Allegrucci M; Sauer K
    J Bacteriol; 2008 Oct; 190(19):6330-9. PubMed ID: 18658260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells.
    Lo AW; Seers CA; Boyce JD; Dashper SG; Slakeski N; Lissel JP; Reynolds EC
    BMC Microbiol; 2009 Jan; 9():18. PubMed ID: 19175941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.