These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22709657)

  • 1. NH3 molecular doping of silicon nanowires grown along the [112], [110], [001], and [111] orientations.
    Miranda A; Cartoixà X; Canadell E; Rurali R
    Nanoscale Res Lett; 2012 Jun; 7(1):308. PubMed ID: 22709657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band-gap engineering of halogenated silicon nanowires through molecular doping.
    de Santiago F; Trejo A; Miranda A; Carvajal E; Pérez LA; Cruz-Irisson M
    J Mol Model; 2017 Oct; 23(11):314. PubMed ID: 29035419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confinement and surface effects in B and P doping of silicon nanowires.
    Leao CR; Fazzio A; da Silva AJ
    Nano Lett; 2008 Jul; 8(7):1866-71. PubMed ID: 18529083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires.
    de Santiago F; Trejo A; Miranda A; Salazar F; Carvajal E; Pérez LA; Cruz-Irisson M
    Nanotechnology; 2018 May; 29(20):204001. PubMed ID: 29480169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of dopant-pair defects and doping efficiency in B- and P-doped silicon nanowires.
    Moon CY; Lee WJ; Chang KJ
    Nano Lett; 2008 Oct; 8(10):3086-91. PubMed ID: 18729413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity.
    Li H; Li D; Chen H; Yue X; Fan K; Dong L; Wang G
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled boron-doping and geometry control of tin-catalyzed silicon nanowires for high performance radial junction photovoltaics.
    Zhang S; Zhang T; Cao L; Liu Z; Wang J; Xu J; Chen K; Yu L
    Opt Express; 2019 Dec; 27(26):37248-37256. PubMed ID: 31878508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-plane epitaxial growth of silicon nanowires and junction formation on Si(100) substrates.
    Yu L; Xu M; Xu J; Xue Z; Fan Z; Picardi G; Fortuna F; Wang J; Xu J; Shi Y; Chen K; Roca i Cabarrocas P
    Nano Lett; 2014 Nov; 14(11):6469-74. PubMed ID: 25343717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon nanowires as field-effect transducers for biosensor development: a review.
    Noor MO; Krull UJ
    Anal Chim Acta; 2014 May; 825():1-25. PubMed ID: 24767146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomically smooth p-doped silicon nanowires catalyzed by aluminum at low temperature.
    Moutanabbir O; Senz S; Scholz R; Alexe M; Kim Y; Pippel E; Wang Y; Wiethoff C; Nabbefeld T; Meyer zu Heringdorf F; Horn-von Hoegen M
    ACS Nano; 2011 Feb; 5(2):1313-20. PubMed ID: 21210666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers.
    Hazut O; Agarwala A; Amit I; Subramani T; Zaidiner S; Rosenwaks Y; Yerushalmi R
    ACS Nano; 2012 Nov; 6(11):10311-8. PubMed ID: 23083376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Pyrolytic Synthesis of Silicon Nanowires.
    Chan JC; Tran H; Pattison JW; Rananavare SB
    Solid State Electron; 2010 Oct; 54(10):1185-1191. PubMed ID: 20711489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic level scheme in boron- and phosphorus-doped silicon nanowires.
    Sato K; Castaldini A; Fukata N; Cavallini A
    Nano Lett; 2012 Jun; 12(6):3012-7. PubMed ID: 22545949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of active impurities in single silicon nanowires.
    Imamura G; Kawashima T; Fujii M; Nishimura C; Saitoh T; Hayashi S
    Nano Lett; 2008 Sep; 8(9):2620-4. PubMed ID: 18700807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interstitial sodium and lithium doping effects on the electronic and mechanical properties of silicon nanowires: a DFT study.
    Salazar F; Trejo-Baños A; Miranda A; Pérez LA; Cruz-Irisson M
    J Mol Model; 2019 Nov; 25(11):338. PubMed ID: 31705205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles study of polymer-passivated silicon nanowire outer-shell defects.
    Wei L; Li F; Pang S; Wang Y; Guo J; Chen J
    Phys Chem Chem Phys; 2022 May; 24(18):11169-11174. PubMed ID: 35476044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry.
    Gonchar KA; Zubairova AA; Schleusener A; Osminkina LA; Sivakov V
    Nanoscale Res Lett; 2016 Dec; 11(1):357. PubMed ID: 27506530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium insertion in silicon nanowires: an ab initio study.
    Zhang Q; Zhang W; Wan W; Cui Y; Wang E
    Nano Lett; 2010 Sep; 10(9):3243-9. PubMed ID: 20681548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unexpected phosphorus doping routine of planar silicon nanowires for integrating CMOS logics.
    Sun Y; Qian W; Liu S; Dong T; Wang J; Xu J; Chen K; Yu L
    Nanoscale; 2021 Sep; 13(35):15031-15037. PubMed ID: 34533152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.