These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 22709657)
21. Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping. Dong G; Liu F; Liu J; Zhang H; Zhu M Nanoscale Res Lett; 2013 Dec; 8(1):544. PubMed ID: 24369781 [TBL] [Abstract][Full Text] [Related]
22. First-principles study of silicon nanowire approaching the bulk limit. Ng MF; Sullivan MB; Tong SW; Wu P Nano Lett; 2011 Nov; 11(11):4794-9. PubMed ID: 21942398 [TBL] [Abstract][Full Text] [Related]
23. Doping limits of grown in situ doped silicon nanowires using phosphine. Schmid H; Björk MT; Knoch J; Karg S; Riel H; Riess W Nano Lett; 2009 Jan; 9(1):173-7. PubMed ID: 19099512 [TBL] [Abstract][Full Text] [Related]
24. A simple route to growth of silicon nanowires. Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306 [TBL] [Abstract][Full Text] [Related]
25. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Park WI; Zheng G; Jiang X; Tian B; Lieber CM Nano Lett; 2008 Sep; 8(9):3004-9. PubMed ID: 18710294 [TBL] [Abstract][Full Text] [Related]
26. Ex situ vapor phase boron doping of silicon nanowires using BBr3. Doerk GS; Lestari G; Liu F; Carraro C; Maboudian R Nanoscale; 2010 Jul; 2(7):1165-70. PubMed ID: 20648344 [TBL] [Abstract][Full Text] [Related]
27. Thermal conductivity in porous silicon nanowire arrays. Weisse JM; Marconnet AM; Kim DR; Rao PM; Panzer MA; Goodson KE; Zheng X Nanoscale Res Lett; 2012 Oct; 7(1):554. PubMed ID: 23039084 [TBL] [Abstract][Full Text] [Related]
28. Structural modulation of silicon nanowires by combining a high gas flow rate with metal catalysts. Seo D; Lee J; Kim SW; Kim I; Na J; Hong MH; Choi HJ Nanoscale Res Lett; 2015; 10():190. PubMed ID: 26034411 [TBL] [Abstract][Full Text] [Related]
29. Estimation of the Depletion Layer Thickness in Silicon Nanowire-Based Biosensors from Attomolar-Level Biomolecular Detection. Zhang H; Qiu Y; Osawa F; Itabashi M; Ohshima N; Kajisa T; Sakata T; Izumi T; Sone H ACS Appl Mater Interfaces; 2023 Apr; 15(16):19892-19903. PubMed ID: 37046176 [TBL] [Abstract][Full Text] [Related]
30. Scalable chemical synthesis of doped silicon nanowires for energy applications. Burchak O; Keller C; Lapertot G; Salaün M; Danet J; Chen Y; Bendiab N; Pépin-Donat B; Lombard C; Faure-Vincent J; Vignon A; Aradilla D; Reiss P; Chenevier P Nanoscale; 2019 Nov; 11(46):22504-22514. PubMed ID: 31746905 [TBL] [Abstract][Full Text] [Related]
31. Pixel-based biosensor for enhanced control: silicon nanowires monolithically integrated with field-effect transistors in fully depleted silicon on insulator technology. Jayakumar G; Östling M Nanotechnology; 2019 May; 30(22):225502. PubMed ID: 30721898 [TBL] [Abstract][Full Text] [Related]
32. Highly Sensitive Ammonia Gas Detection at Room Temperature by Integratable Silicon Nanowire Field-Effect Sensors. Song X; Hu R; Xu S; Liu Z; Wang J; Shi Y; Xu J; Chen K; Yu L ACS Appl Mater Interfaces; 2021 Mar; 13(12):14377-14384. PubMed ID: 33750109 [TBL] [Abstract][Full Text] [Related]
33. Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires. Demichel O; Calvo V; Pauc N; Besson A; Noé P; Oehler F; Gentile P; Magnea N Nano Lett; 2009 Jul; 9(7):2575-8. PubMed ID: 19583280 [TBL] [Abstract][Full Text] [Related]
35. An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires. Yu L; Alet PJ; Picardi G; Roca i Cabarrocas P Phys Rev Lett; 2009 Mar; 102(12):125501. PubMed ID: 19392293 [TBL] [Abstract][Full Text] [Related]
36. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy. Sun Z; Hazut O; Huang BC; Chiu YP; Chang CS; Yerushalmi R; Lauhon LJ; Seidman DN Nano Lett; 2016 Jul; 16(7):4490-500. PubMed ID: 27351447 [TBL] [Abstract][Full Text] [Related]
37. Silicon nanowires for biosensing, energy storage, and conversion. Wang Y; Wang T; Da P; Xu M; Wu H; Zheng G Adv Mater; 2013 Oct; 25(37):5177-95. PubMed ID: 23828226 [TBL] [Abstract][Full Text] [Related]
38. Significant enhancement of hole mobility in [110] silicon nanowires compared to electrons and bulk silicon. Buin AK; Verma A; Svizhenko A; Anantram MP Nano Lett; 2008 Feb; 8(2):760-5. PubMed ID: 18205425 [TBL] [Abstract][Full Text] [Related]
39. Silicon Nanowire Heterojunction Solar Cells with an Al Kato S; Kurokawa Y; Gotoh K; Soga T Nanoscale Res Lett; 2019 Mar; 14(1):99. PubMed ID: 30877482 [TBL] [Abstract][Full Text] [Related]
40. Molecular doping and subsurface dopant reactivation in si nanowires. Miranda-Durán A; Cartoixà X; Cruz Irisson M; Rurali R Nano Lett; 2010 Sep; 10(9):3590-5. PubMed ID: 20734978 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]