These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 22709677)
1. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Celton M; Goelzer A; Camarasa C; Fromion V; Dequin S Metab Eng; 2012 Jul; 14(4):366-79. PubMed ID: 22709677 [TBL] [Abstract][Full Text] [Related]
2. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. Celton M; Sanchez I; Goelzer A; Fromion V; Camarasa C; Dequin S BMC Genomics; 2012 Jul; 13():317. PubMed ID: 22805527 [TBL] [Abstract][Full Text] [Related]
3. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Ehsani M; Fernández MR; Biosca JA; Julien A; Dequin S Appl Environ Microbiol; 2009 May; 75(10):3196-205. PubMed ID: 19329666 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872 [TBL] [Abstract][Full Text] [Related]
5. Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli. Liang K; Shen CR J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1605-1612. PubMed ID: 29116429 [TBL] [Abstract][Full Text] [Related]
6. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Henningsen BM; Hon S; Covalla SF; Sonu C; Argyros DA; Barrett TF; Wiswall E; Froehlich AC; Zelle RM Appl Environ Microbiol; 2015 Dec; 81(23):8108-17. PubMed ID: 26386051 [TBL] [Abstract][Full Text] [Related]
7. Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production. Tyibilika V; Setati ME; Bloem A; Divol B; Camarasa C Int J Food Microbiol; 2024 Feb; 411():110537. PubMed ID: 38150773 [TBL] [Abstract][Full Text] [Related]
8. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055 [TBL] [Abstract][Full Text] [Related]
9. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae. Bloem A; Sanchez I; Dequin S; Camarasa C Appl Environ Microbiol; 2016 Jan; 82(1):174-83. PubMed ID: 26475113 [TBL] [Abstract][Full Text] [Related]
10. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Kim S; Hahn JS Metab Eng; 2015 Sep; 31():94-101. PubMed ID: 26226562 [TBL] [Abstract][Full Text] [Related]
11. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Hou J; Lages NF; Oldiges M; Vemuri GN Metab Eng; 2009; 11(4-5):253-61. PubMed ID: 19446033 [TBL] [Abstract][Full Text] [Related]
12. Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production. Chen Y; Liu Q; Chen X; Wu J; Guo T; Zhu C; Ying H J Ind Microbiol Biotechnol; 2015 Apr; 42(4):577-83. PubMed ID: 25566953 [TBL] [Abstract][Full Text] [Related]
13. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Jayakody LN; Horie K; Hayashi N; Kitagaki H Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286 [TBL] [Abstract][Full Text] [Related]
14. Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris ( Tomàs-Gamisans M; Andrade CCP; Maresca F; Monforte S; Ferrer P; Albiol J Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31757828 [TBL] [Abstract][Full Text] [Related]
15. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. Bao T; Zhang X; Rao Z; Zhao X; Zhang R; Yang T; Xu Z; Yang S PLoS One; 2014; 9(7):e102951. PubMed ID: 25036158 [TBL] [Abstract][Full Text] [Related]
16. Metabolic impact of increased NADH availability in Saccharomyces cerevisiae. Hou J; Scalcinati G; Oldiges M; Vemuri GN Appl Environ Microbiol; 2010 Feb; 76(3):851-9. PubMed ID: 20023106 [TBL] [Abstract][Full Text] [Related]
17. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae. Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706 [TBL] [Abstract][Full Text] [Related]
18. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Liang K; Shen CR Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827 [TBL] [Abstract][Full Text] [Related]
19. Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol. González E; Fernández MR; Marco D; Calam E; Sumoy L; Parés X; Dequin S; Biosca JA Appl Environ Microbiol; 2010 Feb; 76(3):670-9. PubMed ID: 19966022 [TBL] [Abstract][Full Text] [Related]
20. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. Bakker BM; Overkamp KM; van Maris AJ ; Kötter P; Luttik MA; van Dijken JP ; Pronk JT FEMS Microbiol Rev; 2001 Jan; 25(1):15-37. PubMed ID: 11152939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]