These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22709891)

  • 21. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The effect of platelet-rich plasma on new bone formation by augmentation with osseoconductive bone substitute material in beagle dogs].
    Velich N; Kovács K; Huszár T; Semjén G; Reiczigel J; Szabó G; Suba Z
    Fogorv Sz; 2004 Feb; 97(1):23-7. PubMed ID: 15067889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ectopic osteogenesis by ex vivo gene therapy using beta tricalcium phosphate as a carrier.
    Han D; Sun X; Zhang X; Tang T; Dai K
    Connect Tissue Res; 2008; 49(5):343-50. PubMed ID: 18991087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteogenesis of the construct combined BMSCs with beta-TCP in rat.
    Zhang M; Wang K; Shi Z; Yang H; Dang X; Wang W
    J Plast Reconstr Aesthet Surg; 2010 Feb; 63(2):227-32. PubMed ID: 19091642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of beta-tricalcium phosphate mixed with platelet-rich plasma versus beta-tricalcium phosphate, a bone substitute material in dentistry.
    Kovács K; Velich N; Huszár T; Szabó G; Semjén G; Reiczigel J; Suba Z
    Acta Vet Hung; 2003; 51(4):475-84. PubMed ID: 14680059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo.
    Ghanaati S; Barbeck M; Orth C; Willershausen I; Thimm BW; Hoffmann C; Rasic A; Sader RA; Unger RE; Peters F; Kirkpatrick CJ
    Acta Biomater; 2010 Dec; 6(12):4476-87. PubMed ID: 20624495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate.
    Takahashi Y; Yamamoto M; Tabata Y
    Biomaterials; 2005 Aug; 26(23):4856-65. PubMed ID: 15763265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a beta-tricalcium phosphate carrier into one-wall intrabony defects in dogs.
    Lee JS; Wikesjö UM; Jung UW; Choi SH; Pippig S; Siedler M; Kim CK
    J Clin Periodontol; 2010 Apr; 37(4):382-9. PubMed ID: 20447262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Angiogenic effects of mesenchymal stem cells in combination with different scaffold materials.
    Jehn P; Winterboer J; Kampmann A; Zimmerer R; Spalthoff S; Dittmann J; Gellrich NC; Tavassol F
    Microvasc Res; 2020 Jan; 127():103925. PubMed ID: 31521541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beta-tricalcium phosphate as a synthetic cancellous bone graft in veterinary orthopaedics: a retrospective study of 13 clinical cases.
    Franch J; Díaz-Bertrana C; Lafuente P; Fontecha P; Durall I
    Vet Comp Orthop Traumatol; 2006; 19(4):196-204. PubMed ID: 17143391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo performance of microstructured calcium phosphate formulated in novel water-free carriers.
    Davison N; Yuan H; de Bruijn JD; Barrere-de Groot F
    Acta Biomater; 2012 Jul; 8(7):2759-69. PubMed ID: 22487931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice.
    Liang G; Yang Y; Oh S; Ong JL; Zheng C; Ran J; Yin G; Zhou D
    Biomaterials; 2005 Jul; 26(20):4265-71. PubMed ID: 15683650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of the combination with alpha-tricalcium phosphate and simvastatin on bone regeneration.
    Nyan M; Sato D; Kihara H; Machida T; Ohya K; Kasugai S
    Clin Oral Implants Res; 2009 Mar; 20(3):280-7. PubMed ID: 19397639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repair of calvarial bone defects in mice using electrospun polystyrene scaffolds combined with β-TCP or gold nanoparticles.
    Terranova L; Dragusin DM; Mallet R; Vasile E; Stancu IC; Behets C; Chappard D
    Micron; 2017 Feb; 93():29-37. PubMed ID: 27912139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects.
    Schneider OD; Weber F; Brunner TJ; Loher S; Ehrbar M; Schmidlin PR; Stark WJ
    Acta Biomater; 2009 Jun; 5(5):1775-84. PubMed ID: 19121610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulation of the in vivo resorption rate of β-tricalcium phosphate bone graft substitutes implanted in a sheep model.
    Bashoor-Zadeh M; Baroud G; Bohner M
    Biomaterials; 2011 Sep; 32(27):6362-73. PubMed ID: 21658758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2.
    Sawyer AA; Song SJ; Susanto E; Chuan P; Lam CX; Woodruff MA; Hutmacher DW; Cool SM
    Biomaterials; 2009 May; 30(13):2479-88. PubMed ID: 19162318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The primacy of octacalcium phosphate collagen composites in bone regeneration.
    Kamakura S; Sasaki K; Homma T; Honda Y; Anada T; Echigo S; Suzuki O
    J Biomed Mater Res A; 2007 Dec; 83(3):725-33. PubMed ID: 17559110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and characterization of macroporous chitosan-gelatin/beta-tricalcium phosphate composite scaffolds for bone tissue engineering.
    Yin Y; Ye F; Cui J; Zhang F; Li X; Yao K
    J Biomed Mater Res A; 2003 Dec; 67(3):844-55. PubMed ID: 14613233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.