BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22710079)

  • 1. Determination of optical coefficients and fractal dimensional parameters of cancerous and normal prostate tissues.
    Pu Y; Wang W; Al-Rubaiee M; Gayen SK; Xu M
    Appl Spectrosc; 2012 Jul; 66(7):828-34. PubMed ID: 22710079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy.
    Ijichi S; Kusaka T; Isobe K; Okubo K; Kawada K; Namba M; Okada H; Nishida T; Imai T; Itoh S
    Pediatr Res; 2005 Sep; 58(3):568-73. PubMed ID: 16148075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm.
    Ao H; Xing D; Wei H; Gu H; Wu G; Lu J
    Phys Med Biol; 2008 Apr; 53(8):2197-206. PubMed ID: 18385526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues.
    Ebenezar J; Pu Y; Wang WB; Liu CH; Alfano RR
    Appl Opt; 2012 Jun; 51(16):3642-9. PubMed ID: 22695604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.
    Svensson T; Swartling J; Taroni P; Torricelli A; Lindblom P; Ingvar C; Andersson-Engels S
    Phys Med Biol; 2005 Jun; 50(11):2559-71. PubMed ID: 15901954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Absorption and scattering characteristics of human benign prostatic hyperplasia tissue with Ti: sapphire laser irradiation in vitro].
    Wei HJ; Xing D; He BH; Wu RH; Gu HM; Wu GY; Chen XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jan; 28(1):10-3. PubMed ID: 18422108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model.
    Salomatina E; Yaroslavsky AN
    Phys Med Biol; 2008 Jun; 53(11):2797-807. PubMed ID: 18451462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for determination of the absorption and scattering properties interstitially in turbid media.
    Dimofte A; Finlay JC; Zhu TC
    Phys Med Biol; 2005 May; 50(10):2291-311. PubMed ID: 15876668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the absorption and scattering properties in the near-infrared region during the growth of Bacillus subtilis in liquid culture.
    Dzhongova E; Harwood CR; Thennadil SN
    Appl Spectrosc; 2009 Jan; 63(1):25-32. PubMed ID: 19146716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring reduced scattering coefficient in pedicle screw insertion trajectory using near-infrared spectroscopy.
    Li W; Liu Y; Sun H; Pan Y; Qian Z
    Med Biol Eng Comput; 2016 Oct; 54(10):1533-9. PubMed ID: 26695814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved reflectance spectroscopy in turbid tissues.
    Jacques SL
    IEEE Trans Biomed Eng; 1989 Dec; 36(12):1155-61. PubMed ID: 2606489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of rotational dynamics of receptor-targeted contrast agents in cancerous and normal prostate tissues using time-resolved picosecond emission spectroscopy.
    Pu Y; Wang WB; Achilefu S; Alfano RR
    Appl Opt; 2011 Apr; 50(10):1312-22. PubMed ID: 21460894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue.
    Kienle A; Lilge L; Patterson MS; Hibst R; Steiner R; Wilson BC
    Appl Opt; 1996 May; 35(13):2304-14. PubMed ID: 21085367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using scattering and absorption spectra as MCR-hard model constraints for diffuse reflectance measurements of tablets.
    Kessler W; Oelkrug D; Kessler R
    Anal Chim Acta; 2009 May; 642(1-2):127-34. PubMed ID: 19427467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy.
    Bosschaart N; Aalders MC; Faber DJ; Weda JJ; van Gemert MJ; van Leeuwen TG
    Opt Lett; 2009 Dec; 34(23):3746-8. PubMed ID: 19953182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients.
    Kim A; Roy M; Dadani F; Wilson BC
    Opt Express; 2010 Mar; 18(6):5580-94. PubMed ID: 20389574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Spectral characteristics of normal breast samples in the 350-850 nm wavelength range].
    Wang YH; Yang HQ; Xie SS; Ye Z; Su YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2751-5. PubMed ID: 20038053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent.
    Pu Y; Wang WB; Tang GC; Zeng F; Achilefu S; Vitenson JH; Sawczuk I; Peters S; Lombardo JM; Alfano RR
    Technol Cancer Res Treat; 2005 Aug; 4(4):429-36. PubMed ID: 16029061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissue using thin-slice echo-planar imaging.
    Manenti G; Squillaci E; Di Roma M; Carlani M; Mancino S; Simonetti G
    Radiol Med; 2006 Dec; 111(8):1124-33. PubMed ID: 17171522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.