These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22710311)

  • 1. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles.
    Wang P; Huang B; Dai Y; Whangbo MH
    Phys Chem Chem Phys; 2012 Jul; 14(28):9813-25. PubMed ID: 22710311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis.
    Jiang J; Li H; Zhang L
    Chemistry; 2012 May; 18(20):6360-9. PubMed ID: 22517472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of visible light photocatalytic NO(x) oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres.
    Sun Y; Zhao Z; Dong F; Zhang W
    Phys Chem Chem Phys; 2015 Apr; 17(16):10383-90. PubMed ID: 25765222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights into plasmonic photocatalysts in utilizing visible light.
    Leong KH; Aziz AA; Sim LC; Saravanan P; Jang M; Bahnemann D
    Beilstein J Nanotechnol; 2018; 9():628-648. PubMed ID: 29527438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and visible light photocatalytic activity of Ag/TiO₂/graphene nanocomposite.
    Wen Y; Ding H; Shan Y
    Nanoscale; 2011 Oct; 3(10):4411-7. PubMed ID: 21909581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light.
    Xiao Q; Jaatinen E; Zhu H
    Chem Asian J; 2014 Nov; 9(11):3046-64. PubMed ID: 25048419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications.
    Kochuveedu ST; Jang YH; Kim DH
    Chem Soc Rev; 2013 Nov; 42(21):8467-93. PubMed ID: 23925494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic photocatalysis.
    Zhang X; Chen YL; Liu RS; Tsai DP
    Rep Prog Phys; 2013 Apr; 76(4):046401. PubMed ID: 23455654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-concentrating plasmonic Au superstructures with significantly visible-light-enhanced catalytic performance.
    Yang J; Li Y; Zu L; Tong L; Liu G; Qin Y; Shi D
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8200-8. PubMed ID: 25840556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation.
    Tsukamoto D; Shiraishi Y; Sugano Y; Ichikawa S; Tanaka S; Hirai T
    J Am Chem Soc; 2012 Apr; 134(14):6309-15. PubMed ID: 22440019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis.
    DuChene JS; Sweeny BC; Johnston-Peck AC; Su D; Stach EA; Wei WD
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7887-91. PubMed ID: 24920227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Bi metal as cocatalyst and photocatalyst: The case of Bi/(BiO)
    Sun Y; Zhao Z; Zhang W; Gao C; Zhang Y; Dong F
    J Colloid Interface Sci; 2017 Jan; 485():1-10. PubMed ID: 27639168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation.
    Hu C; Peng T; Hu X; Nie Y; Zhou X; Qu J; He H
    J Am Chem Soc; 2010 Jan; 132(2):857-62. PubMed ID: 20028089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Plasmon-Assisted Solar Energy Conversion.
    Dodekatos G; Schünemann S; Tüysüz H
    Top Curr Chem; 2016; 371():215-52. PubMed ID: 26092694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noble-metal-free plasmonic photocatalyst: hydrogen doped semiconductors.
    Ma X; Dai Y; Yu L; Huang B
    Sci Rep; 2014 Feb; 4():3986. PubMed ID: 24496400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of Ag3PO4 nanoparticles on two-dimensional Ag2S sheets as visible-light-driven photocatalysts.
    Ma P; Yu H; Yu Y; Wang W; Wang H; Zhang J; Fu Z
    Phys Chem Chem Phys; 2016 Feb; 18(5):3638-43. PubMed ID: 26753745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schottky-barrier-free plasmonic photocatalysts.
    An K; Hu J; Wang J
    Phys Chem Chem Phys; 2023 Jul; 25(29):19358-19370. PubMed ID: 37439122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy.
    Linic S; Christopher P; Ingram DB
    Nat Mater; 2011 Nov; 10(12):911-21. PubMed ID: 22109608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.