These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 22710724)

  • 61. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.
    Madaria AR; Yao M; Chi C; Huang N; Lin C; Li R; Povinelli ML; Dapkus PD; Zhou C
    Nano Lett; 2012 Jun; 12(6):2839-45. PubMed ID: 22594573
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Silicon nanowire arrays with enhanced optical properties.
    Khorasaninejad M; Swillam MA; Pillai K; Saini SS
    Opt Lett; 2012 Oct; 37(20):4194-6. PubMed ID: 23073408
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Heteroepitaxial decoration of Ag nanoparticles on Si nanowires: a case study on Raman scattering and mapping.
    Peng Z; Hu H; Utama MI; Wong LM; Ghosh K; Chen R; Wang S; Shen Z; Xiong Q
    Nano Lett; 2010 Oct; 10(10):3940-7. PubMed ID: 20795630
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cavity-enhanced stimulated raman scattering from short GaP nanowires.
    Wu J; Gupta AK; Gutierrez HR; Eklund PC
    Nano Lett; 2009 Sep; 9(9):3252-7. PubMed ID: 19678612
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays.
    Simpkins BS; Long JP; Glembocki OJ; Guo J; Caldwell JD; Owrutsky JC
    Opt Express; 2012 Dec; 20(25):27725-39. PubMed ID: 23262719
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Deformation potentials and electron-phonon coupling in silicon nanowires.
    Murphy-Armando F; Fagas G; Greer JC
    Nano Lett; 2010 Mar; 10(3):869-73. PubMed ID: 20121164
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
    Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G
    Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Giant enhancement of the carrier mobility in silicon nanowires with diamond coating.
    Fonoberov VA; Balandin AA
    Nano Lett; 2006 Nov; 6(11):2442-6. PubMed ID: 17090071
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Large longitudinal electric fields (Ez) in silicon nanowire waveguides.
    Driscoll JB; Liu X; Yasseri S; Hsieh I; Dadap JI; Osgood RM
    Opt Express; 2009 Feb; 17(4):2797-804. PubMed ID: 19219184
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Raman Spectroscopy of Oxide-Embedded and Ligand-Stabilized Silicon Nanocrystals.
    Hessel CM; Wei J; Reid D; Fujii H; Downer MC; Korgel BA
    J Phys Chem Lett; 2012 May; 3(9):1089-93. PubMed ID: 26288041
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fabrication of silicon nanowire for detecting p-amyloid (1-42) by nanoimprint lithography.
    Choi DS; Lee JH; Jung HS; Jung GY; Choi JH; Choi JW; Oh BK
    J Nanosci Nanotechnol; 2011 May; 11(5):4517-21. PubMed ID: 21780489
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Raman Spectroscopy-Based Quality Control of "Silicon-On-Insulator" Nanowire Chips for the Detection of Brain Cancer-Associated MicroRNA in Plasma.
    Malsagova KA; Popov VP; Kupriyanov IN; Pleshakova TO; Galiullin RA; Kozlov AF; Shumov ID; Larionov DI; Tikhonenko FV; Kapustina SI; Ziborov VS; Petrov OF; Gadzhieva OA; Bashiryan BA; Shimansky VN; Archakov AI; Ivanov YD
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33668578
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems.
    Smith DC; Spencer JH; Sloan J; McDonnell LP; Trewhitt H; Kashtiban RJ; Faulques E
    J Vis Exp; 2016 Apr; (110):. PubMed ID: 27168195
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enhanced photothermal conversion in vertically oriented gallium arsenide nanowire arrays.
    Walia J; Dhindsa N; Flannery J; Khodabad I; Forrest J; LaPierre R; Saini SS
    Nano Lett; 2014 Oct; 14(10):5820-6. PubMed ID: 25233265
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays.
    Bezares FJ; Long JP; Glembocki OJ; Guo J; Rendell RW; Kasica R; Shirey L; Owrutsky JC; Caldwell JD
    Opt Express; 2013 Nov; 21(23):27587-601. PubMed ID: 24514277
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Raman spectroscopy of diamond and doped diamond.
    Prawer S; Nemanich RJ
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2537-65. PubMed ID: 15482990
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ordered stacking fault arrays in silicon nanowires.
    Lopez FJ; Hemesath ER; Lauhon LJ
    Nano Lett; 2009 Jul; 9(7):2774-9. PubMed ID: 19527044
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers.
    Gorisse T; Dupré L; Gentile P; Martin M; Zelsmann M; Buttard D
    Nanoscale Res Lett; 2013 Jun; 8(1):287. PubMed ID: 23773702
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fabrication of silicon oxide nanowires embedded with Au nanoparticle or Au nanowire: its use as template to hollow silica nanotube.
    Chung SY; Chun JH; Kim DE
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5555-7. PubMed ID: 19198497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.