These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 22711175)
1. Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing. Takahashi H; Tanaka H; Matsumoto K; Shimoyama I Bioinspir Biomim; 2012 Sep; 7(3):036020. PubMed ID: 22711175 [TBL] [Abstract][Full Text] [Related]
2. Differential pressure measurement using a free-flying insect-like ornithopter with an MEMS sensor. Takahashi H; Aoyama Y; Ohsawa K; Tanaka H; Iwase E; Matsumoto K; Shimoyama I Bioinspir Biomim; 2010 Sep; 5(3):036005. PubMed ID: 20710069 [TBL] [Abstract][Full Text] [Related]
3. Forward flight of swallowtail butterfly with simple flapping motion. Tanaka H; Shimoyama I Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782 [TBL] [Abstract][Full Text] [Related]
4. Effects of structural flexibility of wings in flapping flight of butterfly. Senda K; Obara T; Kitamura M; Yokoyama N; Hirai N; Iima M Bioinspir Biomim; 2012 Jun; 7(2):025002. PubMed ID: 22617048 [TBL] [Abstract][Full Text] [Related]
5. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method. Tay WB; van Oudheusden BW; Bijl H Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155 [TBL] [Abstract][Full Text] [Related]
6. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings. Zhao L; Deng X; Sane SP Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729 [TBL] [Abstract][Full Text] [Related]
7. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Maybury WJ; Lehmann FO J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564 [TBL] [Abstract][Full Text] [Related]
8. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. Wang JK; Sun M J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955 [TBL] [Abstract][Full Text] [Related]
9. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles. Zbikowski R Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181 [TBL] [Abstract][Full Text] [Related]
10. Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces. Bimbard G; Kolomenskiy D; Bouteleux O; Casas J; Godoy-Diana R J Exp Biol; 2013 Sep; 216(Pt 18):3551-63. PubMed ID: 23788714 [TBL] [Abstract][Full Text] [Related]
11. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system. Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627 [TBL] [Abstract][Full Text] [Related]
12. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Park H; Choi H Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952 [TBL] [Abstract][Full Text] [Related]
13. A novel mechanism for emulating insect wing kinematics. Seshadri P; Benedict M; Chopra I Bioinspir Biomim; 2012 Sep; 7(3):036017. PubMed ID: 22677520 [TBL] [Abstract][Full Text] [Related]
14. Effect of outer wing separation on lift and thrust generation in a flapping wing system. Mahardika N; Viet NQ; Park HC Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715 [TBL] [Abstract][Full Text] [Related]
15. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Shang JK; Combes SA; Finio BM; Wood RJ Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572 [TBL] [Abstract][Full Text] [Related]
16. The significance of moment-of-inertia variation in flight manoeuvres of butterflies. Lin T; Zheng L; Hedrick T; Mittal R Bioinspir Biomim; 2012 Dec; 7(4):044002. PubMed ID: 23092976 [TBL] [Abstract][Full Text] [Related]
17. Measurement of wing motion, deformation, and inertial forces of a biomimetic butterfly. Yang AY; Wei BZ; Zeng CS; Xing DX Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39058364 [TBL] [Abstract][Full Text] [Related]
18. An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies. Ishihara D; Horie T; Niho T Bioinspir Biomim; 2014 Nov; 9(4):046009. PubMed ID: 25378268 [TBL] [Abstract][Full Text] [Related]
19. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect. Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351 [TBL] [Abstract][Full Text] [Related]
20. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings. Lehmann FO J Exp Biol; 2008 Jan; 211(Pt 2):224-33. PubMed ID: 18165250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]