These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 2271121)
1. Electroporation of adherent cells in situ. Raptis L; Firth KL DNA Cell Biol; 1990 Oct; 9(8):615-21. PubMed ID: 2271121 [TBL] [Abstract][Full Text] [Related]
2. Electroporation of peptides into adherent cells in situ. Raptis LH; Liu SK; Firth KL; Stiles CD; Alberta JA Biotechniques; 1995 Jan; 18(1):104, 106, 108, 110 passim. PubMed ID: 7702835 [TBL] [Abstract][Full Text] [Related]
3. Applications of electroporation of adherent cells in situ, on a partly conductive slide. Raptis LH; Brownell HL; Liu SK; Firth KL; MacKenzie LW; Stiles CD; Alberta JA Mol Biotechnol; 1995 Oct; 4(2):129-38. PubMed ID: 8556428 [TBL] [Abstract][Full Text] [Related]
4. In situ electroporation of radioactive compounds into adherent cells. Tomai E; Vultur A; Balboa V; Hsu T; Brownell HL; Firth KL; Raptis L DNA Cell Biol; 2003 May; 22(5):339-46. PubMed ID: 12941161 [TBL] [Abstract][Full Text] [Related]
5. Electroporation of adherent cells in situ for the study of signal transduction and gap junctional communication. Raptis L; Vultur A; Brownell HL; Tomai E; Anagnostopoulou A; Arulanandam R; Cao J; Firth KL Methods Mol Biol; 2008; 423():173-89. PubMed ID: 18370198 [TBL] [Abstract][Full Text] [Related]
6. Electrode assemblies used for electroporation of cultured cells. Raptis L; Firth KL Methods Mol Biol; 2008; 423():61-76. PubMed ID: 18370190 [TBL] [Abstract][Full Text] [Related]
7. A functional assay for gap junctional examination; electroporation of adherent cells on indium-tin oxide. Geletu M; Guy S; Firth K; Raptis L J Vis Exp; 2014 Oct; (92):e51710. PubMed ID: 25350637 [TBL] [Abstract][Full Text] [Related]
8. Development of a microfabricated device for low-voltage electropermeabilization of adherent cells. Hakamada K; Shintaku H; Nagata T; Fujimoto H; Kawano S; Miyake J J Biosci Bioeng; 2013 Mar; 115(3):314-9. PubMed ID: 23158167 [TBL] [Abstract][Full Text] [Related]
9. Electroporation of adherent cells in situ for the introduction of nonpermeant molecules. Raptis LH; Firth KL; Brownell HL; Todd A; Simon WC; Bennett BM; MacKenzie LW; Zannis-Hadjopoulos M Methods Mol Biol; 1995; 48():93-113. PubMed ID: 8528412 [No Abstract] [Full Text] [Related]
10. Growth on indium-tin oxide-coated glass enhances 32P-phosphate uptake and protein labelling of adherent cells. Tomai E; Klein S; Firth K; Raptis L Prep Biochem Biotechnol; 2000 Nov; 30(4):313-20. PubMed ID: 11065276 [TBL] [Abstract][Full Text] [Related]
11. Electrically modulated attachment and detachment of animal cells cultured on an optically transparent patterning electrode. Koyama S J Biosci Bioeng; 2011 May; 111(5):574-83. PubMed ID: 21277827 [TBL] [Abstract][Full Text] [Related]
12. Recovery of adherent cells after in situ electroporation monitored electrically. Wegener J; Keese CR; Giaever I Biotechniques; 2002 Aug; 33(2):348, 350, 352 passim. PubMed ID: 12188187 [TBL] [Abstract][Full Text] [Related]
13. Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Caprettini V; Cerea A; Melle G; Lovato L; Capozza R; Huang JA; Tantussi F; Dipalo M; De Angelis F Sci Rep; 2017 Aug; 7(1):8524. PubMed ID: 28819252 [TBL] [Abstract][Full Text] [Related]
14. Improved procedure for electroporation of peptides into adherent cells in situ. Firth KL; Brownell HL; Raptis L Biotechniques; 1997 Oct; 23(4):644-6. PubMed ID: 9343683 [No Abstract] [Full Text] [Related]
15. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells. Pluk H; Stokes DJ; Lich B; Wieringa B; Fransen J J Microsc; 2009 Mar; 233(3):353-63. PubMed ID: 19250456 [TBL] [Abstract][Full Text] [Related]
16. Efficient electroporation of peptides into adherent cells: investigation of the role of mechano-growth factor in chondrocyte culture. Schönenberger C; Schütz A; Franco-Obregón A; Zenobi-Wong M Biotechnol Lett; 2011 May; 33(5):883-8. PubMed ID: 21207114 [TBL] [Abstract][Full Text] [Related]
17. Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following permeation by rectangular and exponential-decay electric field pulses. Liang H; Purucker WJ; Stenger DA; Kubiniec RT; Hui SW Biotechniques; 1988 Jun; 6(6):550-2, 554, 556-8. PubMed ID: 2483506 [TBL] [Abstract][Full Text] [Related]
18. Electrotransfection of mammalian cells using microchannel-type electroporation chip. Shin YS; Cho K; Kim JK; Lim SH; Park CH; Lee KB; Park Y; Chung C; Han DC; Chang JK Anal Chem; 2004 Dec; 76(23):7045-52. PubMed ID: 15571358 [TBL] [Abstract][Full Text] [Related]
19. A new spiral microelectrode assembly for electroporation and impedance measurements of adherent cell monolayers. García-Sánchez T; Guitart M; Rosell-Ferrer J; Gómez-Foix AM; Bragós R Biomed Microdevices; 2014 Aug; 16(4):575-90. PubMed ID: 24682587 [TBL] [Abstract][Full Text] [Related]
20. Subnanosecond electric pulses cause membrane permeabilization and cell death. Xiao S; Guo S; Nesin V; Heller R; Schoenbach KH IEEE Trans Biomed Eng; 2011 May; 58(5):1239-45. PubMed ID: 21303739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]