These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 22711381)
1. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides. Nakayama M; Kotobuki M; Munakata H; Nogami M; Kanamura K Phys Chem Chem Phys; 2012 Jul; 14(28):10008-14. PubMed ID: 22711381 [TBL] [Abstract][Full Text] [Related]
2. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Thangadurai V; Narayanan S; Pinzaru D Chem Soc Rev; 2014 Jul; 43(13):4714-27. PubMed ID: 24681593 [TBL] [Abstract][Full Text] [Related]
3. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. Geiger CA; Alekseev E; Lazic B; Fisch M; Armbruster T; Langner R; Fechtelkord M; Kim N; Pettke T; Weppner W Inorg Chem; 2011 Feb; 50(3):1089-97. PubMed ID: 21188978 [TBL] [Abstract][Full Text] [Related]
4. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes. Ramzy A; Thangadurai V ACS Appl Mater Interfaces; 2010 Feb; 2(2):385-90. PubMed ID: 20356183 [TBL] [Abstract][Full Text] [Related]
5. Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. Thangadurai V; Pinzaru D; Narayanan S; Baral AK J Phys Chem Lett; 2015 Jan; 6(2):292-9. PubMed ID: 26263465 [TBL] [Abstract][Full Text] [Related]
6. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet. Dhivya L; Murugan R ACS Appl Mater Interfaces; 2014 Oct; 6(20):17606-15. PubMed ID: 25265573 [TBL] [Abstract][Full Text] [Related]
7. New insights into the structural and dynamical features of lithium hexaoxometalates Li7MO6 (M = Nb, Ta, Sb, Bi). Mühle C; Dinnebier RE; van Wüllen L; Schwering G; Jansen M Inorg Chem; 2004 Feb; 43(3):874-81. PubMed ID: 14753807 [TBL] [Abstract][Full Text] [Related]
8. First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure. Nakayama M; Kaneko M; Wakihara M Phys Chem Chem Phys; 2012 Oct; 14(40):13963-70. PubMed ID: 22986640 [TBL] [Abstract][Full Text] [Related]
9. Changes in electronic structure upon lithium insertion into the A-site deficient perovskite type oxides (Li,La)TiO3. Nakayama M; Usui T; Uchimoto Y; Wakihara M; Yamamoto M J Phys Chem B; 2005 Mar; 109(9):4135-43. PubMed ID: 16851474 [TBL] [Abstract][Full Text] [Related]
10. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
11. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. Wu JF; Pang WK; Peterson VK; Wei L; Guo X ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Meng YS; Arroyo-de Dompablo ME Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876 [TBL] [Abstract][Full Text] [Related]
13. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Fu KK; Gong Y; Liu B; Zhu Y; Xu S; Yao Y; Luo W; Wang C; Lacey SD; Dai J; Chen Y; Mo Y; Wachsman E; Hu L Sci Adv; 2017 Apr; 3(4):e1601659. PubMed ID: 28435874 [TBL] [Abstract][Full Text] [Related]
14. Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. Li Y; Chen X; Dolocan A; Cui Z; Xin S; Xue L; Xu H; Park K; Goodenough JB J Am Chem Soc; 2018 May; 140(20):6448-6455. PubMed ID: 29688712 [TBL] [Abstract][Full Text] [Related]
15. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
16. Li/Garnet Interface Optimization: An Overview. Duan H; Oluwatemitope F; Wu S; Zheng H; Zou Y; Li G; Wu Y; Liu H ACS Appl Mater Interfaces; 2020 Nov; 12(47):52271-52284. PubMed ID: 33176424 [TBL] [Abstract][Full Text] [Related]
17. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". Buschmann H; Dölle J; Berendts S; Kuhn A; Bottke P; Wilkening M; Heitjans P; Senyshyn A; Ehrenberg H; Lotnyk A; Duppel V; Kienle L; Janek J Phys Chem Chem Phys; 2011 Nov; 13(43):19378-92. PubMed ID: 21986676 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. van Wüllen L; Echelmeyer T; Meyer HW; Wilmer D Phys Chem Chem Phys; 2007 Jul; 9(25):3298-303. PubMed ID: 17579739 [TBL] [Abstract][Full Text] [Related]
19. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 - a comparison of results from solid state NMR and impedance spectroscopy. Wilkening M; Amade R; Iwaniak W; Heitjans P Phys Chem Chem Phys; 2007 Mar; 9(10):1239-46. PubMed ID: 17325770 [TBL] [Abstract][Full Text] [Related]