These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 22711470)
1. Effective, safe nonviral gene transfer to preserve the chondrogenic differentiation potential of human mesenchymal stem cells. Elsler S; Schetting S; Schmitt G; Kohn D; Madry H; Cucchiarini M J Gene Med; 2012 Jul; 14(7):501-11. PubMed ID: 22711470 [TBL] [Abstract][Full Text] [Related]
2. Metabolic activities and chondrogenic differentiation of human mesenchymal stem cells following recombinant adeno-associated virus-mediated gene transfer and overexpression of fibroblast growth factor 2. Cucchiarini M; Ekici M; Schetting S; Kohn D; Madry H Tissue Eng Part A; 2011 Aug; 17(15-16):1921-33. PubMed ID: 21417714 [TBL] [Abstract][Full Text] [Related]
3. Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. Hoelters J; Ciccarella M; Drechsel M; Geissler C; Gülkan H; Böcker W; Schieker M; Jochum M; Neth P J Gene Med; 2005 Jun; 7(6):718-28. PubMed ID: 15712343 [TBL] [Abstract][Full Text] [Related]
4. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Wu L; Prins HJ; Helder MN; van Blitterswijk CA; Karperien M Tissue Eng Part A; 2012 Aug; 18(15-16):1542-51. PubMed ID: 22429306 [TBL] [Abstract][Full Text] [Related]
5. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Ronzière MC; Perrier E; Mallein-Gerin F; Freyria AM Biomed Mater Eng; 2010; 20(3):145-58. PubMed ID: 20930322 [TBL] [Abstract][Full Text] [Related]
6. Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-β via recombinant adeno-associated viral vectors. Frisch J; Venkatesan JK; Rey-Rico A; Schmitt G; Madry H; Cucchiarini M Hum Gene Ther; 2014 Dec; 25(12):1050-60. PubMed ID: 25333854 [TBL] [Abstract][Full Text] [Related]
7. An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. Zhang L; Yuan T; Guo L; Zhang X J Biomed Mater Res A; 2012 Oct; 100(10):2717-25. PubMed ID: 22623365 [TBL] [Abstract][Full Text] [Related]
9. In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes. Chen WH; Lai MT; Wu AT; Wu CC; Gelovani JG; Lin CT; Hung SC; Chiu WT; Deng WP Arthritis Rheum; 2009 Feb; 60(2):450-9. PubMed ID: 19180515 [TBL] [Abstract][Full Text] [Related]
10. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881 [TBL] [Abstract][Full Text] [Related]
11. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. Solchaga LA; Penick K; Porter JD; Goldberg VM; Caplan AI; Welter JF J Cell Physiol; 2005 May; 203(2):398-409. PubMed ID: 15521064 [TBL] [Abstract][Full Text] [Related]
12. Co-overexpression of TGF-β and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Tao K; Frisch J; Rey-Rico A; Venkatesan JK; Schmitt G; Madry H; Lin J; Cucchiarini M Stem Cell Res Ther; 2016 Feb; 7():20. PubMed ID: 26830674 [TBL] [Abstract][Full Text] [Related]
13. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. Park J; Gelse K; Frank S; von der Mark K; Aigner T; Schneider H J Gene Med; 2006 Jan; 8(1):112-25. PubMed ID: 16142704 [TBL] [Abstract][Full Text] [Related]
14. Human mesenchymal stem cells: Influence of oxygen pressure on proliferation and chondrogenic differentiation in fibrin glue in vitro. Baumgartner L; Arnhold S; Brixius K; Addicks K; Bloch W J Biomed Mater Res A; 2010 Jun; 93(3):930-40. PubMed ID: 19708077 [TBL] [Abstract][Full Text] [Related]
15. Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. Guzzo RM; Gibson J; Xu RH; Lee FY; Drissi H J Cell Biochem; 2013 Feb; 114(2):480-90. PubMed ID: 22961870 [TBL] [Abstract][Full Text] [Related]
16. Chondrogenic induction of human mesenchymal stem cells using combined growth factors for cartilage tissue engineering. Bosetti M; Boccafoschi F; Leigheb M; Bianchi AE; Cannas M J Tissue Eng Regen Med; 2012 Mar; 6(3):205-13. PubMed ID: 21360690 [TBL] [Abstract][Full Text] [Related]
17. Membrane-based cultures generate scaffold-free neocartilage in vitro: influence of growth factors. Mayer-Wagner S; Schiergens TS; Sievers B; Docheva D; Schieker M; Betz OB; Jansson V; Müller PE Tissue Eng Part A; 2010 Feb; 16(2):513-21. PubMed ID: 19715388 [TBL] [Abstract][Full Text] [Related]
18. Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by combined gene transfer. Steinert AF; Palmer GD; Pilapil C; Nöth U; Evans CH; Ghivizzani SC Tissue Eng Part A; 2009 May; 15(5):1127-39. PubMed ID: 18826340 [TBL] [Abstract][Full Text] [Related]
19. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Indrawattana N; Chen G; Tadokoro M; Shann LH; Ohgushi H; Tateishi T; Tanaka J; Bunyaratvej A Biochem Biophys Res Commun; 2004 Jul; 320(3):914-9. PubMed ID: 15240135 [TBL] [Abstract][Full Text] [Related]
20. Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold. Yoon IS; Chung CW; Sung JH; Cho HJ; Kim JS; Shim WS; Shim CK; Chung SJ; Kim DD J Biosci Bioeng; 2011 Oct; 112(4):402-8. PubMed ID: 21802988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]