These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
539 related articles for article (PubMed ID: 22711498)
1. Activation of Ras-dependent signaling pathways by G(14) -coupled receptors requires the adaptor protein TPR1. Kwan DH; Yung LY; Ye RD; Wong YH J Cell Biochem; 2012 Nov; 113(11):3486-97. PubMed ID: 22711498 [TBL] [Abstract][Full Text] [Related]
2. Galpha16 activates Ras by forming a complex with tetratricopeptide repeat 1 (TPR1) and Son of Sevenless (SOS). Liu AM; Lo RK; Lee MM; Wang Y; Yeung WW; Ho MK; Su Y; Ye RD; Wong YH Cell Signal; 2010 Oct; 22(10):1448-58. PubMed ID: 20639119 [TBL] [Abstract][Full Text] [Related]
3. Gα16 interacts with tetratricopeptide repeat 1 (TPR1) through its β3 region to activate Ras independently of phospholipase Cβ signaling. Liu AM; Lo RKh; Guo EX; Ho MK; Ye RD; Wong YH BMC Struct Biol; 2011 Apr; 11():17. PubMed ID: 21486497 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional activation of c-Fos by constitutively active Galpha(16)QL through a STAT1-dependent pathway. Lo RK; Wong YH Cell Signal; 2006 Dec; 18(12):2143-53. PubMed ID: 16781847 [TBL] [Abstract][Full Text] [Related]
5. Gbetagamma signaling and Ca2+ mobilization co-operate synergistically in a Sos and Rac-dependent manner in the activation of JNK by Gq-coupled receptors. Chan AS; Wong YH Cell Signal; 2004 Jul; 16(7):823-36. PubMed ID: 15115661 [TBL] [Abstract][Full Text] [Related]
6. Signal transducer and activator of transcription 3 activation by the delta-opioid receptor via Galpha14 involves multiple intermediates. Lo RK; Wong YH Mol Pharmacol; 2004 Jun; 65(6):1427-39. PubMed ID: 15155836 [TBL] [Abstract][Full Text] [Related]
7. The RhoA-specific guanine nucleotide exchange factor p63RhoGEF binds to activated Galpha(16) and inhibits the canonical phospholipase Cbeta pathway. Yeung WW; Wong YH Cell Signal; 2009 Aug; 21(8):1317-25. PubMed ID: 19332116 [TBL] [Abstract][Full Text] [Related]
8. Prostacyclin receptor-induced STAT3 phosphorylation in human erythroleukemia cells is mediated via Galpha(s) and Galpha(16) hybrid signaling. Lo RK; Liu AM; Wise H; Wong YH Cell Signal; 2008 Nov; 20(11):2095-106. PubMed ID: 18755267 [TBL] [Abstract][Full Text] [Related]
9. Identification of tetratricopeptide repeat 1 as an adaptor protein that interacts with heterotrimeric G proteins and the small GTPase Ras. Marty C; Browning DD; Ye RD Mol Cell Biol; 2003 Jun; 23(11):3847-58. PubMed ID: 12748287 [TBL] [Abstract][Full Text] [Related]
10. Activation of nuclear factor {kappa}B by somatostatin type 2 receptor in pancreatic acinar AR42J cells involves G{alpha}14 and multiple signaling components: a mechanism requiring protein kinase C, calmodulin-dependent kinase II, ERK, and c-Src. Liu AM; Wong YH J Biol Chem; 2005 Oct; 280(41):34617-25. PubMed ID: 16115892 [TBL] [Abstract][Full Text] [Related]
11. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-beta(1). Litosch I; Pujari R; Lee SJ Cell Signal; 2009 Sep; 21(9):1379-84. PubMed ID: 19414067 [TBL] [Abstract][Full Text] [Related]
12. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling. Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796 [TBL] [Abstract][Full Text] [Related]
13. Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interaction. Heydorn A; Ward RJ; Jorgensen R; Rosenkilde MM; Frimurer TM; Milligan G; Kostenis E Mol Pharmacol; 2004 Aug; 66(2):250-9. PubMed ID: 15266015 [TBL] [Abstract][Full Text] [Related]
14. LARG links histamine-H1-receptor-activated Gq to Rho-GTPase-dependent signaling pathways. Pfreimer M; Vatter P; Langer T; Wieland T; Gierschik P; Moepps B Cell Signal; 2012 Mar; 24(3):652-63. PubMed ID: 22100544 [TBL] [Abstract][Full Text] [Related]
15. G protein-coupled receptor-mediated mitogen-activated protein kinase activation through cooperation of Galpha(q) and Galpha(i) signals. Blaukat A; Barac A; Cross MJ; Offermanns S; Dikic I Mol Cell Biol; 2000 Sep; 20(18):6837-48. PubMed ID: 10958680 [TBL] [Abstract][Full Text] [Related]
16. Galphaq signaling is required for Rho-dependent transcriptional activation of the cyclooxygenase-2 promoter in fibroblasts. Slice LW; Han SK; Simon MI J Cell Physiol; 2003 Feb; 194(2):127-38. PubMed ID: 12494451 [TBL] [Abstract][Full Text] [Related]
17. Differential involvement of Galpha16 in CC chemokine-induced stimulation of phospholipase Cbeta, ERK, and chemotaxis. Tian Y; Lee MM; Yung LY; Allen RA; Slocombe PM; Twomey BM; Wong YH Cell Signal; 2008 Jun; 20(6):1179-89. PubMed ID: 18406577 [TBL] [Abstract][Full Text] [Related]
18. Galpha16 interacts with Class IA phosphatidylinositol 3-kinases and inhibits Akt signaling. Yeung WW; Wong YH Cell Signal; 2010 Sep; 22(9):1379-87. PubMed ID: 20471473 [TBL] [Abstract][Full Text] [Related]
19. Constitutive serum response factor activation by the viral chemokine receptor homologue pUS28 is differentially regulated by Galpha(q/11) and Galpha(16). Moepps B; Tulone C; Kern C; Minisini R; Michels G; Vatter P; Wieland T; Gierschik P Cell Signal; 2008 Aug; 20(8):1528-37. PubMed ID: 18534820 [TBL] [Abstract][Full Text] [Related]
20. Noradrenergic regulation of period1 expression in spinal astrocytes is involved in protein kinase A, c-Jun N-terminal kinase and extracellular signal-regulated kinase activation mediated by α1- and β2-adrenoceptors. Sugimoto T; Morioka N; Sato K; Hisaoka K; Nakata Y Neuroscience; 2011 Jun; 185():1-13. PubMed ID: 21524690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]