These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 2271171)

  • 21. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues.
    Zaccolo M; Williams DM; Brown DM; Gherardi E
    J Mol Biol; 1996 Feb; 255(4):589-603. PubMed ID: 8568899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid protocol for sequencing RNA virus using delta Taq version 2.0 DNA polymerase.
    Lai AC; Chambers TM
    Biotechniques; 1995 Nov; 19(5):704-6. PubMed ID: 8588899
    [No Abstract]   [Full Text] [Related]  

  • 23. Using mini-prep plasmid DNA for sequencing double stranded templates with Sequenase.
    Kraft R; Tardiff J; Krauter KS; Leinwand LA
    Biotechniques; 1988 Jun; 6(6):544-6, 549. PubMed ID: 3273187
    [No Abstract]   [Full Text] [Related]  

  • 24. Inferred hepatitis C virus quasispecies diversity is influenced by choice of DNA polymerase in reverse transcriptase-polymerase chain reactions.
    Mullan B; Kenny-Walsh E; Collins JK; Shanahan F; Fanning LJ
    Anal Biochem; 2001 Feb; 289(2):137-46. PubMed ID: 11161307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNAse A treatment of Taq and Tth DNA polymerases eliminates primer/template-independent poly(dA-dT) synthesis.
    Hanaki K; Nishihara T; Odawara T; Nakajima N; Yamamoto K; Yoshikura H
    Biotechniques; 2001 Oct; 31(4):734, 736, 738. PubMed ID: 11680699
    [No Abstract]   [Full Text] [Related]  

  • 26. Arrest of replication by mammalian DNA polymerases alpha and beta caused by chromium-DNA lesions.
    Bridgewater LC; Manning FC; Patierno SR
    Mol Carcinog; 1998 Dec; 23(4):201-6. PubMed ID: 9869448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Taq-amplified fragments appear as doublets in denaturing gradient gels.
    Zhu D; Zhou J; Keohavong P
    Anal Biochem; 1997 Jan; 244(2):404-6. PubMed ID: 9025958
    [No Abstract]   [Full Text] [Related]  

  • 28. Priming efficiency in PCR.
    Rychlik W
    Biotechniques; 1995 Jan; 18(1):84-6, 88-90. PubMed ID: 7702859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amplification of low copy number, large DNA sequences in human genomic DNA using Tub DNA polymerase.
    Forrester HB; Radford IR; Deacon NJ
    Biotechniques; 1994 Jul; 17(1):20, 22. PubMed ID: 7946303
    [No Abstract]   [Full Text] [Related]  

  • 30. Slow rate of phosphodiester bond formation accounts for the strong bias that Taq DNA polymerase shows against 2',3'-dideoxynucleotide terminators.
    Brandis JW; Edwards SG; Johnson KA
    Biochemistry; 1996 Feb; 35(7):2189-200. PubMed ID: 8652560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient DNA sequencing on microtiter plates using dried reagents and Bst DNA polymerase.
    Earley JJ; Kuivaniemi H; Prockop DJ; Tromp G
    DNA Seq; 1993; 4(2):79-85. PubMed ID: 8173079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA sequencing using Taq polymerase.
    Peterson MG
    Nucleic Acids Res; 1988 Nov; 16(22):10915. PubMed ID: 3205726
    [No Abstract]   [Full Text] [Related]  

  • 33. A fast and simple procedure for sequencing double stranded DNA with sequenase.
    Hsiao K
    Nucleic Acids Res; 1991 May; 19(10):2787. PubMed ID: 2041756
    [No Abstract]   [Full Text] [Related]  

  • 34. Use of modified T7 DNA polymerase (sequenase version 2.0) for oligonucleotide site-directed mutagenesis.
    Venkitaraman AR
    Nucleic Acids Res; 1989 Apr; 17(8):3314. PubMed ID: 2726477
    [No Abstract]   [Full Text] [Related]  

  • 35. Direct sequencing from low-melt agarose with Sequenase.
    Kretz KA; Carson GS; O'Brien JS
    Nucleic Acids Res; 1989 Jul; 17(14):5864. PubMed ID: 2762168
    [No Abstract]   [Full Text] [Related]  

  • 36. A new method of bipolymerase sequencing prevents "stop-bands".
    Austin CC
    Mol Biotechnol; 1995 Aug; 4(1):100-1. PubMed ID: 8521035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Pseudomonas aeruginosa fliO, a gene involved in flagellar biosynthesis and adherence.
    Simpson DA; Ramphal R; Lory S
    Infect Immun; 1995 Aug; 63(8):2950-7. PubMed ID: 7622217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The cell cycle-regulated flagellar gene flbF of Caulobacter crescentus is homologous to a virulence locus (lcrD) of Yersinia pestis.
    Ramakrishnan G; Zhao JL; Newton A
    J Bacteriol; 1991 Nov; 173(22):7283-92. PubMed ID: 1938923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular genetics of the flgI region and its role in flagellum biosynthesis in Caulobacter crescentus.
    Khambaty FM; Ely B
    J Bacteriol; 1992 Jun; 174(12):4101-9. PubMed ID: 1597425
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.