These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22711764)

  • 1. Ex vivo measurement of postmortem tissue changes in the crystalline lens by Brillouin spectroscopy and confocal reflectance microscopy.
    Reiss S; Sperlich K; Hovakimyan M; Martius P; Guthoff RF; Stolz H; Stachs O
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2348-54. PubMed ID: 22711764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Non-invasive, spatially resolved determination of tissue properties of the crystalline lens with regard to rheology, refractive index, density and protein concentration by using Brillouin spectroscopy].
    Reiss S; Stachs O; Guthoff R; Stolz H
    Klin Monbl Augenheilkd; 2011 Dec; 228(12):1079-85. PubMed ID: 22167358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.
    Stachs O; Schumacher S; Hovakimyan M; Fromm M; Heisterkamp A; Lubatschowski H; Guthoff R
    J Cataract Refract Surg; 2009 Nov; 35(11):1979-83. PubMed ID: 19878832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens.
    Reiß S; Burau G; Stachs O; Guthoff R; Stolz H
    Biomed Opt Express; 2011 Aug; 2(8):2144-59. PubMed ID: 21833354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The refractive index and protein distribution in the blue eye trevally lens.
    Pierscionek BK; Augusteyn RC
    J Am Optom Assoc; 1995 Dec; 66(12):739-43. PubMed ID: 8557951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid contents along the visual and equatorial axes of a pig lens by Raman spectroscopy.
    Medina-Gutiérrez C; Frausto-Reyes C; Quintanar-Stephano JL; Sato-Berrú R
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Aug; 60(10):2269-74. PubMed ID: 15249015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Limits of the confocal laser-scanning technique in measurements of time-resolved autofluorescence of the ocular fundus].
    Schweitzer D; Hammer M; Schweitzer F
    Biomed Tech (Berl); 2005 Sep; 50(9):263-7. PubMed ID: 16185033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo Brillouin optical microscopy of the human eye.
    Scarcelli G; Yun SH
    Opt Express; 2012 Apr; 20(8):9197-202. PubMed ID: 22513631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation between local acoustic parameters and protein distribution in human and porcine eye lenses.
    De Korte CL; Van Der Steen AF; Thijssen JM; Duindam JJ; Otto C; Puppels GJ
    Exp Eye Res; 1994 Nov; 59(5):617-27. PubMed ID: 9492763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy.
    Scarcelli G; Kim P; Yun SH
    Biophys J; 2011 Sep; 101(6):1539-45. PubMed ID: 21943436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KCC isoforms in a human lens epithelial cell line (B3) and lens tissue extracts.
    Misri S; Chimote AA; Adragna NC; Warwar R; Brown TL; Lauf PK
    Exp Eye Res; 2006 Nov; 83(5):1287-94. PubMed ID: 16949074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central surface curvatures of postmortem- extracted intact human crystalline lenses: implications for understanding the mechanism of accommodation.
    Schachar RA
    Ophthalmology; 2004 Sep; 111(9):1699-704. PubMed ID: 15350325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic spectroscopy of the porcine eye lens.
    van der Steen AF; de Korte CL; Thijssen JM
    Ultrasound Med Biol; 1994; 20(9):967-74. PubMed ID: 7886855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal light microscopy and scanning electron microscopy of the human eye lens.
    Masters BR; Vrensen GF; Willekens B; van Marle J
    Exp Eye Res; 1997 Mar; 64(3):371-7. PubMed ID: 9196388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organophosphates of the crystalline lens: a nuclear magnetic resonance spectroscopic study.
    Greiner JV; Kopp SJ; Sanders DR; Glonek T
    Invest Ophthalmol Vis Sci; 1981 Nov; 21(5):700-13. PubMed ID: 7298274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-mortem water uptake by sheep lenses left in situ.
    Augusteyn RC; Cake MA
    Mol Vis; 2005 Sep; 11():749-51. PubMed ID: 16179906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes in lenses of mice lacking the gap junction protein connexin43.
    Gao Y; Spray DC
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1198-209. PubMed ID: 9620080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-induced structural transition in-situ in porcine lens--changes observed in void size distribution.
    Sane P; Tuomisto F; Wiedmer SK; Nyman T; Vattulainen I; Holopainen JM
    Biochim Biophys Acta; 2010 May; 1798(5):958-65. PubMed ID: 20122897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive identification of different intraocular lenses using Raman spectroscopy in porcine eyes.
    Hwang JU; Choi H; Jeong DH; Kim MJ; Tchah H
    J Cataract Refract Surg; 2007 Apr; 33(4):709-12. PubMed ID: 17397748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Brillouin Analysis of the Aging Crystalline Lens.
    Besner S; Scarcelli G; Pineda R; Yun SH
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5093-5100. PubMed ID: 27699407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.