BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 22711767)

  • 1. Behavior of tip-steerable needles in ex vivo and in vivo tissue.
    Majewicz A; Marra SP; van Vledder MG; Lin M; Choti MA; Song DY; Okamura AM
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2705-15. PubMed ID: 22711767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods for Improving the Curvature of Steerable Needles in Biological Tissue.
    Adebar TK; Greer JD; Laeseke PF; Hwang GL; Okamura AM
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1167-77. PubMed ID: 26441438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Robotic Needle Steering in ex vivo Tissue.
    Majewicz A; Wedlick TR; Reed KB; Okamura AM
    IEEE Int Conf Robot Autom; 2010 May; 2010():2068-2073. PubMed ID: 21339851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel curvature-controllable steerable needle for percutaneous intervention.
    Bui VK; Park S; Park JO; Ko SY
    Proc Inst Mech Eng H; 2016 Aug; 230(8):727-38. PubMed ID: 27206444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexure-based steerable needle: high curvature with reduced tissue damage.
    Swaney PJ; Burgner J; Gilbert HB; Webster RJ
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):906-9. PubMed ID: 23204267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of pre-curved needles for steering in tissue.
    Wedlick TR; Okamura AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1200-3. PubMed ID: 19963994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Articulated Robotic Needle Achieves Distributed Ablation of Liver Tissue.
    Gerboni G; Greer JD; Laeseke PF; Hwang GL; Okamura AM
    IEEE Robot Autom Lett; 2017 Jul; 2(3):1367-1374. PubMed ID: 28664186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Robotic Steering of Flexible Needles from 3D Ultrasound Images in Phantoms and Ex Vivo Biological Tissue.
    Mignon P; Poignet P; Troccaz J
    Ann Biomed Eng; 2018 Sep; 46(9):1385-1396. PubMed ID: 29845413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steerable needles for radio-frequency ablation in cirrhotic livers.
    van de Berg NJ; Meeuwsen FC; Doukas M; Kronreif G; Moelker A; van den Dobbelsteen JJ
    Sci Rep; 2021 Jan; 11(1):309. PubMed ID: 33431965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-D ultrasound-guided robotic needle steering in biological tissue.
    Adebar TK; Fletcher AE; Okamura AM
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2899-910. PubMed ID: 25014948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-Automated Needle Steering in Biological Tissue Using an Ultrasound-Based Deflection Predictor.
    Khadem M; Rossa C; Usmani N; Sloboda RS; Tavakoli M
    Ann Biomed Eng; 2017 Apr; 45(4):924-938. PubMed ID: 27646146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tip Design for Safety of Steerable Needles for Robot-Controlled Brain Insertion.
    Lehocky CA; Fellows-Mayle W; Engh JA; Riviere CN
    Robot Surg; 2017; 4():107-114. PubMed ID: 29170740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axially rigid steerable needle with compliant active tip control.
    de Vries M; Sikorski J; Misra S; van den Dobbelsteen JJ
    PLoS One; 2021; 16(12):e0261089. PubMed ID: 34914777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endpoint Accuracy in Manual Control of a Steerable Needle.
    van de Berg NJ; Dankelman J; van den Dobbelsteen JJ
    J Vasc Interv Radiol; 2017 Feb; 28(2):276-283.e2. PubMed ID: 27720573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation and experimental studies in needle-tissue interactions.
    Konh B; Honarvar M; Darvish K; Hutapea P
    J Clin Monit Comput; 2017 Aug; 31(4):861-872. PubMed ID: 27430491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling Steerability from Diameter: Helical Dovetail Laser Patterning for Steerable Needles.
    Rox M; Emerson M; Ertop TE; Fried I; Fu M; Hoelscher J; Kuntz A; Granna J; Mitchell J; Lester M; Maldonado F; Gillaspie EA; Akulian JA; Alterovitz R; Webster RJ
    IEEE Access; 2020; 8():181411-181419. PubMed ID: 35198341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an integrated needle insertion system with image guidance and deformation simulation.
    Kobayashi Y; Onishi A; Watanabe H; Hoshi T; Kawamura K; Hashizume M; Fujie MG
    Comput Med Imaging Graph; 2010 Jan; 34(1):9-18. PubMed ID: 19815388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ovipositor-inspired steerable needle: design and preliminary experimental evaluation.
    Scali M; Pusch TP; Breedveld P; Dodou D
    Bioinspir Biomim; 2017 Dec; 13(1):016006. PubMed ID: 29019464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyper- and viscoelastic modeling of needle and brain tissue interaction.
    Lehocky CA; Yixing Shi ; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6530-3. PubMed ID: 25571492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive mechanics-based model for depth of cut (DOC) of waterjet in soft tissue for waterjet-assisted medical applications.
    Babaiasl M; Boccelli S; Chen Y; Yang F; Ding JL; Swensen JP
    Med Biol Eng Comput; 2020 Aug; 58(8):1845-1872. PubMed ID: 32514828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.