These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

691 related articles for article (PubMed ID: 22711769)

  • 1. Shape deformation in two-dimensional electrical impedance tomography.
    Boyle A; Adler A; Lionheart WR
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2185-93. PubMed ID: 22711769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of conductivity changes and electrode movement in EIT.
    Soleimani M; Gómez-Laberge C; Adler A
    Physiol Meas; 2006 May; 27(5):S103-13. PubMed ID: 16636402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimizing EIT image artefacts from mesh variability in finite element models.
    Adler A; Lionheart WR
    Physiol Meas; 2011 Jul; 32(7):823-34. PubMed ID: 21646712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of electrode area, contact impedance and boundary shape on EIT images.
    Boyle A; Adler A
    Physiol Meas; 2011 Jul; 32(7):745-54. PubMed ID: 21646710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography.
    Nasehi Tehrani J; Oh TI; Jin C; Thiagalingam A; McEwan A
    Comput Biol Med; 2012 Nov; 42(11):1122-32. PubMed ID: 23017828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct EIT Jacobian calculations for conductivity change and electrode movement.
    Gómez-Laberge C; Adler A
    Physiol Meas; 2008 Jun; 29(6):S89-99. PubMed ID: 18544810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical impedance tomography problem with inaccurately known boundary and contact impedances.
    Kolehmainen V; Lassas M; Ola P
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1404-14. PubMed ID: 18815092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of conductivity changes and electrode movements based on EIT temporal sequences.
    Dai T; Gómez-Laberge C; Adler A
    Physiol Meas; 2008 Jun; 29(6):S77-88. PubMed ID: 18544802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical impedance tomography for piecewise constant domains using boundary element shape-based inverse solutions.
    Babaeizadeh S; Brooks DH
    IEEE Trans Med Imaging; 2007 May; 26(5):637-47. PubMed ID: 17518058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking boundary movement and exterior shape modelling in lung EIT imaging.
    Biguri A; Grychtol B; Adler A; Soleimani M
    Physiol Meas; 2015 Jun; 36(6):1119-35. PubMed ID: 26007150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of incompatible boundary information in EIT on the convergence behavior of an iterative algorithm.
    Tang M; Wang W; Wheeler J; McCormick M; Dong X
    IEEE Trans Med Imaging; 2002 Jun; 21(6):620-8. PubMed ID: 12166858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image reconstruction using interval simulated annealing in electrical impedance tomography.
    Martins Tde C; de Camargo ED; Lima RG; Amato MB; Tsuzuki Mde S
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1861-70. PubMed ID: 22361655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
    Woo EJ; Seo JK
    Physiol Meas; 2008 Oct; 29(10):R1-26. PubMed ID: 18799834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choice of reconstructed tissue properties affects interpretation of lung EIT images.
    Grychtol B; Adler A
    Physiol Meas; 2014 Jun; 35(6):1035-50. PubMed ID: 24844670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of the shape of conductivity spectra using differential multi-frequency magnetic induction tomography.
    Brunner P; Merwa R; Missner A; Rosell J; Hollaus K; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S237-48. PubMed ID: 16636414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accounting for hardware imperfections in EIT image reconstruction algorithms.
    Hartinger AE; Gagnon H; Guardo R
    Physiol Meas; 2007 Jul; 28(7):S13-27. PubMed ID: 17664631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of domain shape modeling and measurement errors on the 2-D D-bar method for EIT.
    Murphy EK; Mueller JL
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1576-84. PubMed ID: 19447702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GREIT: a unified approach to 2D linear EIT reconstruction of lung images.
    Adler A; Arnold JH; Bayford R; Borsic A; Brown B; Dixon P; Faes TJ; Frerichs I; Gagnon H; Gärber Y; Grychtol B; Hahn G; Lionheart WR; Malik A; Patterson RP; Stocks J; Tizzard A; Weiler N; Wolf GK
    Physiol Meas; 2009 Jun; 30(6):S35-55. PubMed ID: 19491438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.