These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 22711772)
1. Adaptive Markov random fields for joint unmixing and segmentation of hyperspectral images. Eches O; Benediktsson JA; Dobigeon N; Tourneret JY IEEE Trans Image Process; 2013 Jan; 22(1):5-16. PubMed ID: 22711772 [TBL] [Abstract][Full Text] [Related]
2. Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery. Eches O; Dobigeon N; Mailhes C; Tourneret JY IEEE Trans Image Process; 2010 Jun; 19(6):1403-13. PubMed ID: 20215083 [TBL] [Abstract][Full Text] [Related]
3. Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability. Halimi A; Dobigeon N; Tourneret JY IEEE Trans Image Process; 2015 Dec; 24(12):4904-17. PubMed ID: 26302517 [TBL] [Abstract][Full Text] [Related]
4. Toward a Sparse Bayesian Markov Random Field Approach to Hyperspectral Unmixing and Classification. Peng Chen ; Nelson JDB; Tourneret JY IEEE Trans Image Process; 2017 Jan; 26(1):426-438. PubMed ID: 27810822 [TBL] [Abstract][Full Text] [Related]
5. Incorporating Spatial Information and Endmember Variability Into Unmixing Analyses to Improve Abundance Estimates. Uezato T; Murphy RJ; Melkumyan A; Chlingaryan A IEEE Trans Image Process; 2016 Dec; 25(12):5563-5575. PubMed ID: 27552754 [TBL] [Abstract][Full Text] [Related]
6. [Research on endmember extraction algorithm based on spectral classification]. Gao XH; Xiangli B; Wei RY; Lü QB; Wei JX Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jul; 31(7):1995-8. PubMed ID: 21942068 [TBL] [Abstract][Full Text] [Related]
7. [An algorithm of spectral minimum shannon entropy on extracting endmember of hyperspectral image]. Yang KM; Liu SW; Wang LW; Yang J; Sun YY; He DD Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2229-33. PubMed ID: 25474967 [TBL] [Abstract][Full Text] [Related]
8. Residual component analysis of hyperspectral images--application to joint nonlinear unmixing and nonlinearity detection. Altmann Y; Dobigeon N; McLaughlin S; Tourneret JY IEEE Trans Image Process; 2014 May; 23(5):2148-2158. PubMed ID: 24723576 [TBL] [Abstract][Full Text] [Related]
15. The Successive Projection Algorithm (SPA), an Algorithm with a Spatial Constraint for the Automatic Search of Endmembers in Hyperspectral Data. Zhang J; Rivard B; Rogge DM Sensors (Basel); 2008 Feb; 8(2):1321-1342. PubMed ID: 27879768 [TBL] [Abstract][Full Text] [Related]
16. Endmember extraction and abundance estimation algorithm based on double-compressed sampling. Wang L; Bi Y; Wang W; Li J Sci Rep; 2024 Aug; 14(1):17934. PubMed ID: 39095382 [TBL] [Abstract][Full Text] [Related]
18. [Independent component analysis for spectral unmixing in hyperspectral remote sensing image]. Luo WF; Zhong L; Zhang B; Gao LR Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1628-33. PubMed ID: 20707164 [TBL] [Abstract][Full Text] [Related]
19. Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery. Altmann Y; Halimi A; Dobigeon N; Tourneret JY IEEE Trans Image Process; 2012 Jun; 21(6):3017-25. PubMed ID: 22345533 [TBL] [Abstract][Full Text] [Related]
20. Determining the intrinsic dimension of a hyperspectral image using random matrix theory. Cawse-Nicholson K; Damelin SB; Robin A; Sears M IEEE Trans Image Process; 2013 Apr; 22(4):1301-10. PubMed ID: 23193450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]