These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 22711806)
1. Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF. Ginsbach JW; Kieber-Emmons MT; Nomoto R; Noguchi A; Ohnishi Y; Solomon EI Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10793-7. PubMed ID: 22711806 [TBL] [Abstract][Full Text] [Related]
2. Elucidation of the tyrosinase/O Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2205619119. PubMed ID: 35939688 [TBL] [Abstract][Full Text] [Related]
3. New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase. Kipouros I; Solomon EI FEBS Lett; 2023 Jan; 597(1):65-78. PubMed ID: 36178078 [TBL] [Abstract][Full Text] [Related]
5. Evidence for H-bonding interactions to the μ-η Kipouros I; Stańczak A; Culka M; Andris E; Machonkin TR; Rulíšek L; Solomon EI Chem Commun (Camb); 2022 Mar; 58(24):3913-3916. PubMed ID: 35237779 [TBL] [Abstract][Full Text] [Related]
6. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein. Matoba Y; Kihara S; Muraki Y; Bando N; Yoshitsu H; Kuroda T; Sakaguchi M; Kayama K; Tai H; Hirota S; Ogura T; Sugiyama M Biochemistry; 2017 Oct; 56(41):5593-5603. PubMed ID: 28902505 [TBL] [Abstract][Full Text] [Related]
7. Copper-Oxygen Dynamics in the Tyrosinase Mechanism. Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371 [TBL] [Abstract][Full Text] [Related]
8. First structures of an active bacterial tyrosinase reveal copper plasticity. Sendovski M; Kanteev M; Ben-Yosef VS; Adir N; Fishman A J Mol Biol; 2011 Jan; 405(1):227-37. PubMed ID: 21040728 [TBL] [Abstract][Full Text] [Related]
9. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms. Chen P; Solomon EI Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13105-10. PubMed ID: 15340147 [TBL] [Abstract][Full Text] [Related]
10. Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase. Muñoz-Muñoz JL; Garcia-Molina F; Garcia-Ruiz PA; Varon R; Tudela J; Rodriguez-Lopez JN; Garcia-Canovas F Biochim Biophys Acta; 2011 Dec; 1814(12):1974-83. PubMed ID: 21810487 [TBL] [Abstract][Full Text] [Related]
11. mu-eta2:eta2-peroxodicopper(II) complex with a secondary diamine ligand: a functional model of tyrosinase. Mirica LM; Rudd DJ; Vance MA; Solomon EI; Hodgson KO; Hedman B; Stack TD J Am Chem Soc; 2006 Mar; 128(8):2654-65. PubMed ID: 16492052 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic studies of the tyrosinase-catalyzed oxidative cyclocondensation of 2-aminophenol to 2-aminophenoxazin-3-one. Washington C; Maxwell J; Stevenson J; Malone G; Lowe EW; Zhang Q; Wang G; McIntyre NR Arch Biochem Biophys; 2015 Jul; 577-578():24-34. PubMed ID: 25982123 [TBL] [Abstract][Full Text] [Related]
13. A stabilized mu-eta(2):eta(2) peroxodicopper(II) complex with a secondary diamine ligand and its tyrosinase-like reactivity. Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD J Am Chem Soc; 2002 Aug; 124(32):9332-3. PubMed ID: 12167002 [TBL] [Abstract][Full Text] [Related]
14. Oxygen binding to tyrosinase from streptomyces antibioticus studied by laser flash photolysis. Hirota S; Kawahara T; Lonardi E; de Waal E; Funasaki N; Canters GW J Am Chem Soc; 2005 Dec; 127(51):17966-7. PubMed ID: 16366523 [TBL] [Abstract][Full Text] [Related]
15. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation. Citek C; Lyons CT; Wasinger EC; Stack TD Nat Chem; 2012 Mar; 4(4):317-22. PubMed ID: 22437718 [TBL] [Abstract][Full Text] [Related]
16. Influencing the monophenolase/diphenolase activity ratio in tyrosinase. Goldfeder M; Kanteev M; Adir N; Fishman A Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929 [TBL] [Abstract][Full Text] [Related]
17. Structural and mechanistic insights into the oxy form of tyrosinase from molecular dynamics simulations. Deeth RJ; Diedrich C J Biol Inorg Chem; 2010 Feb; 15(2):117-29. PubMed ID: 19690900 [TBL] [Abstract][Full Text] [Related]
18. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure-reactivity correlations. Wendt F; Näther C; Tuczek F J Biol Inorg Chem; 2016 Sep; 21(5-6):777-92. PubMed ID: 27333775 [TBL] [Abstract][Full Text] [Related]
19. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin. Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103 [TBL] [Abstract][Full Text] [Related]
20. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Yoon J; Fujii S; Solomon EI Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6585-90. PubMed ID: 19346471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]