BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22711806)

  • 1. Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF.
    Ginsbach JW; Kieber-Emmons MT; Nomoto R; Noguchi A; Ohnishi Y; Solomon EI
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10793-7. PubMed ID: 22711806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of the tyrosinase/O
    Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2205619119. PubMed ID: 35939688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase.
    Kipouros I; Solomon EI
    FEBS Lett; 2023 Jan; 597(1):65-78. PubMed ID: 36178078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A copper-containing oxidase catalyzes C-nitrosation in nitrosobenzamide biosynthesis.
    Noguchi A; Kitamura T; Onaka H; Horinouchi S; Ohnishi Y
    Nat Chem Biol; 2010 Sep; 6(9):641-3. PubMed ID: 20676084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for H-bonding interactions to the μ-η
    Kipouros I; Stańczak A; Culka M; Andris E; Machonkin TR; Rulíšek L; Solomon EI
    Chem Commun (Camb); 2022 Mar; 58(24):3913-3916. PubMed ID: 35237779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein.
    Matoba Y; Kihara S; Muraki Y; Bando N; Yoshitsu H; Kuroda T; Sakaguchi M; Kayama K; Tai H; Hirota S; Ogura T; Sugiyama M
    Biochemistry; 2017 Oct; 56(41):5593-5603. PubMed ID: 28902505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-Oxygen Dynamics in the Tyrosinase Mechanism.
    Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First structures of an active bacterial tyrosinase reveal copper plasticity.
    Sendovski M; Kanteev M; Ben-Yosef VS; Adir N; Fishman A
    J Mol Biol; 2011 Jan; 405(1):227-37. PubMed ID: 21040728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms.
    Chen P; Solomon EI
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13105-10. PubMed ID: 15340147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.
    Muñoz-Muñoz JL; Garcia-Molina F; Garcia-Ruiz PA; Varon R; Tudela J; Rodriguez-Lopez JN; Garcia-Canovas F
    Biochim Biophys Acta; 2011 Dec; 1814(12):1974-83. PubMed ID: 21810487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mu-eta2:eta2-peroxodicopper(II) complex with a secondary diamine ligand: a functional model of tyrosinase.
    Mirica LM; Rudd DJ; Vance MA; Solomon EI; Hodgson KO; Hedman B; Stack TD
    J Am Chem Soc; 2006 Mar; 128(8):2654-65. PubMed ID: 16492052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies of the tyrosinase-catalyzed oxidative cyclocondensation of 2-aminophenol to 2-aminophenoxazin-3-one.
    Washington C; Maxwell J; Stevenson J; Malone G; Lowe EW; Zhang Q; Wang G; McIntyre NR
    Arch Biochem Biophys; 2015 Jul; 577-578():24-34. PubMed ID: 25982123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stabilized mu-eta(2):eta(2) peroxodicopper(II) complex with a secondary diamine ligand and its tyrosinase-like reactivity.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    J Am Chem Soc; 2002 Aug; 124(32):9332-3. PubMed ID: 12167002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen binding to tyrosinase from streptomyces antibioticus studied by laser flash photolysis.
    Hirota S; Kawahara T; Lonardi E; de Waal E; Funasaki N; Canters GW
    J Am Chem Soc; 2005 Dec; 127(51):17966-7. PubMed ID: 16366523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation.
    Citek C; Lyons CT; Wasinger EC; Stack TD
    Nat Chem; 2012 Mar; 4(4):317-22. PubMed ID: 22437718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
    Goldfeder M; Kanteev M; Adir N; Fishman A
    Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and mechanistic insights into the oxy form of tyrosinase from molecular dynamics simulations.
    Deeth RJ; Diedrich C
    J Biol Inorg Chem; 2010 Feb; 15(2):117-29. PubMed ID: 19690900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure-reactivity correlations.
    Wendt F; Näther C; Tuczek F
    J Biol Inorg Chem; 2016 Sep; 21(5-6):777-92. PubMed ID: 27333775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin.
    Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B
    J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase.
    Yoon J; Fujii S; Solomon EI
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6585-90. PubMed ID: 19346471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.