BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22711806)

  • 21. Interaction of mushroom tyrosinase with aromatic amines, o-diamines and o-aminophenols.
    Gasowska B; Kafarski P; Wojtasek H
    Biochim Biophys Acta; 2004 Aug; 1673(3):170-7. PubMed ID: 15279888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme.
    Rolff M; Schottenheim J; Decker H; Tuczek F
    Chem Soc Rev; 2011 Jul; 40(7):4077-98. PubMed ID: 21416076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.
    Ismaya WT; Rozeboom HJ; Weijn A; Mes JJ; Fusetti F; Wichers HJ; Dijkstra BW
    Biochemistry; 2011 Jun; 50(24):5477-86. PubMed ID: 21598903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase.
    Yamazaki S; Morioka C; Itoh S
    Biochemistry; 2004 Sep; 43(36):11546-53. PubMed ID: 15350140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction coordinate of a functional model of tyrosinase: spectroscopic and computational characterization.
    Op't Holt BT; Vance MA; Mirica LM; Heppner DE; Stack TD; Solomon EI
    J Am Chem Soc; 2009 May; 131(18):6421-38. PubMed ID: 19368383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inulavosin and its benzo-derivatives, melanogenesis inhibitors, target the copper loading mechanism to the active site of tyrosinase.
    Fujita H; Menezes JC; Santos SM; Yokota S; Kamat SP; Cavaleiro JA; Motokawa T; Kato T; Mochizuki M; Fujiwara T; Fujii Y; Tanaka Y
    Pigment Cell Melanoma Res; 2014 May; 27(3):376-86. PubMed ID: 24479607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity.
    Matoba Y; Oda K; Muraki Y; Masuda T
    Int J Biol Macromol; 2021 Jul; 183():1861-1870. PubMed ID: 34089758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbazole and hydrazone derivatives as new competitive inhibitors of tyrosinase: Experimental clues to binuclear copper active site binding.
    Ghani U
    Bioorg Chem; 2019 Mar; 83():235-241. PubMed ID: 30384179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    Science; 2005 Jun; 308(5730):1890-2. PubMed ID: 15976297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low temperature syntheses and reactivity of Cu2O2 active-site models.
    Citek C; Herres-Pawlis S; Stack TD
    Acc Chem Res; 2015 Aug; 48(8):2424-33. PubMed ID: 26230113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase.
    Toussaint O; Lerch K
    Biochemistry; 1987 Dec; 26(26):8567-71. PubMed ID: 2964867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental Evidence and Mechanistic Description of the Phenolic H-Transfer to the Cu
    Kipouros I; Stańczak A; Dunietz EM; Ginsbach JW; Srnec M; Rulíšek L; Solomon EI
    J Am Chem Soc; 2023 Oct; 145(42):22866-22870. PubMed ID: 37844210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase.
    Do H; Kang E; Yang B; Cha HJ; Choi YS
    Sci Rep; 2017 Dec; 7(1):17267. PubMed ID: 29222480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols.
    Marino SM; Fogal S; Bisaglia M; Moro S; Scartabelli G; De Gioia L; Spada A; Monzani E; Casella L; Mammi S; Bubacco L
    Arch Biochem Biophys; 2011 Jan; 505(1):67-74. PubMed ID: 20875779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural insights into dioxygen-activating copper enzymes.
    Rosenzweig AC; Sazinsky MH
    Curr Opin Struct Biol; 2006 Dec; 16(6):729-35. PubMed ID: 17011183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutational study of Streptomyces tyrosinase trans-activator MelC1. MelC1 is likely a chaperone for apotyrosinase.
    Chen LY; Chen MY; Leu WM; Tsai TY; Lee YH
    J Biol Chem; 1993 Sep; 268(25):18710-6. PubMed ID: 8360164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
    Ramsden CA; Riley PA
    Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic properties of an organic solvent-resistant tyrosinase from Streptomyces sp. REN-21 and its high-level production in E. coli.
    Ito M; Inouye K
    J Biochem; 2005 Oct; 138(4):355-62. PubMed ID: 16272129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unraveling Substrate Specificity and Catalytic Promiscuity of Aspergillus oryzae Catechol Oxidase.
    Penttinen L; Rutanen C; Jänis J; Rouvinen J; Hakulinen N
    Chembiochem; 2018 Nov; 19(22):2348-2352. PubMed ID: 30204291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis.
    Matoba Y; Kumagai T; Yamamoto A; Yoshitsu H; Sugiyama M
    J Biol Chem; 2006 Mar; 281(13):8981-90. PubMed ID: 16436386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.