BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22711824)

  • 21. Stepwise decrease in VEP latencies and the process of myelination in the human visual pathway.
    Tsuneishi S; Casaer P
    Brain Dev; 1997 Dec; 19(8):547-51. PubMed ID: 9440799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gender-based normative values for pattern-reversal and flash visually evoked potentials under binocular and monocular stimulation in healthy adults.
    Dotto PF; Berezovsky A; Sacai PY; Rocha DM; Salomão SR
    Doc Ophthalmol; 2017 Aug; 135(1):53-67. PubMed ID: 28560498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orientation and motion-specific visual cortex responses in infants born preterm.
    Birtles DB; Braddick OJ; Wattam-Bell J; Wilkinson AR; Atkinson J
    Neuroreport; 2007 Dec; 18(18):1975-9. PubMed ID: 18007197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lack of short-latency-potentials in the VEP reflects immature extra geniculate visual function in delayed visual maturation (DVM).
    Kraemer M; Sjöström A
    Doc Ophthalmol; 1998-1999; 97(2):189-201. PubMed ID: 10765971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A conserved switch in sensory processing prepares developing neocortex for vision.
    Colonnese MT; Kaminska A; Minlebaev M; Milh M; Bloem B; Lescure S; Moriette G; Chiron C; Ben-Ari Y; Khazipov R
    Neuron; 2010 Aug; 67(3):480-98. PubMed ID: 20696384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of luminance on dynamic random-dot correlogram evoked visual potentials.
    Markó K; Mikó-Baráth E; Kiss HJ; Török B; Jandó G
    Perception; 2012; 41(6):648-60. PubMed ID: 23094455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binocular summation in visual evoked cortical potential in patients who have significantly different P100 peak latencies in their two eyes.
    Mizota A; Hoshino A; Adachi-Usami E; Fujimoto N
    Graefes Arch Clin Exp Ophthalmol; 2004 Sep; 242(9):762-6. PubMed ID: 15042377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Some recent findings on the development of human binocularity: a review.
    Braddick OJ; Atkinson J
    Behav Brain Res; 1983 Oct; 10(1):141-50. PubMed ID: 6357224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binocular interaction in normal vision studied by pattern-reversal visual evoked potential (PR-VEPS).
    di Summa A; Polo A; Tinazzi M; Zanette G; Bertolasi L; Bongiovanni LG; Fiaschi A
    Ital J Neurol Sci; 1997 Apr; 18(2):81-6. PubMed ID: 9239527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complete restoration of visual cortical responses is possible late in development. Focus on "recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity".
    Chalupa LM
    J Neurophysiol; 2004 Oct; 92(4):1969-70. PubMed ID: 15381738
    [No Abstract]   [Full Text] [Related]  

  • 31. The pattern visual-evoked potential in former preterm infants with retinopathy of prematurity.
    Mintz-Hittner HA; Prager TC; Schweitzer FC; Kretzer FL
    Ophthalmology; 1994 Jan; 101(1):27-34. PubMed ID: 8302559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex.
    Wang BS; Bernardez Sarria MS; An X; He M; Alam NM; Prusky GT; Crair MC; Huang ZJ
    Neuron; 2021 Feb; 109(3):502-515.e7. PubMed ID: 33290732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural and vascular responses to fused binocular stimuli: a VEP and fNIRS study.
    Wijeakumar S; Shahani U; McCulloch DL; Simpson WA
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5881-9. PubMed ID: 22871839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of preterm extrauterine visual experience on the development of the human visual system: a flash VEP study.
    Tsuneishi S; Casaer P
    Dev Med Child Neurol; 2000 Oct; 42(10):663-8. PubMed ID: 11085293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Orientation-reversal and phase-reversal visual evoked potentials in full-term infants with brain lesions: a longitudinal study.
    Mercuri E; Braddick O; Atkinson J; Cowan F; Anker S; Andrew R; Wattam-Bell J; Rutherford M; Counsell S; Dubowitz L
    Neuropediatrics; 1998 Aug; 29(4):169-74. PubMed ID: 9762691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses of primary visual cortical neurons to binocular disparity without depth perception.
    Cumming BG; Parker AJ
    Nature; 1997 Sep; 389(6648):280-3. PubMed ID: 9305841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploratory study of the relationship of fat-free mass to speed of brain processing in preterm infants.
    Pfister KM; Gray HL; Miller NC; Demerath EW; Georgieff MK; Ramel SE
    Pediatr Res; 2013 Nov; 74(5):576-83. PubMed ID: 23942556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual evoked potentials in preterm infants during the first hours of life.
    Pryds O; Greisen G; Trojaborg W
    Electroencephalogr Clin Neurophysiol; 1988; 71(4):257-65. PubMed ID: 2454790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The corpus callosum and the visual cortex: plasticity is a game for two.
    Pietrasanta M; Restani L; Caleo M
    Neural Plast; 2012; 2012():838672. PubMed ID: 22792494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of binocular interaction in refraction errors: study using pattern-reversal visual evoked potentials.
    di Summa A; Fusina S; Bertolasi L; Vicentini S; Perlini S; Bongiovanni LG; Polo A
    Doc Ophthalmol; 1999; 98(2):139-51. PubMed ID: 10947000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.