These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22712389)
1. [Influence of nagE and manX knockout with red homologous recombination on the microbial production of glucosamine by Escherichia coli]. Chen X; Liu L; Li J; Liu J; Du G; Chen J Sheng Wu Gong Cheng Xue Bao; 2012 Mar; 28(3):305-19. PubMed ID: 22712389 [TBL] [Abstract][Full Text] [Related]
2. Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Liu L; Liu Y; Shin HD; Chen R; Li J; Du G; Chen J Appl Microbiol Biotechnol; 2013 Jul; 97(14):6149-58. PubMed ID: 23754704 [TBL] [Abstract][Full Text] [Related]
3. Improved glucosamine and N-acetylglucosamine production by an engineered Escherichia coli via step-wise regulation of dissolved oxygen level. Chen X; Liu L; Li J; Du G; Chen J Bioresour Technol; 2012 Apr; 110():534-8. PubMed ID: 22325898 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of Production of D-Glucosamine in Escherichia coli by Blocking Three Pathways Involved in the Consumption of GlcN and GlcNAc. Li P; Li X; Wen Z; Dong R; Li K; Fan H; Wang R; Wang J; Lv M Mol Biotechnol; 2020 Aug; 62(8):387-399. PubMed ID: 32572810 [TBL] [Abstract][Full Text] [Related]
5. Combinatorial Fine-Tuning of GNA1 and GlmS Expression by 5'-Terminus Fusion Engineering Leads to Overproduction of N-Acetylglucosamine in Bacillus subtilis. Ma W; Liu Y; Wang Y; Lv X; Li J; Du G; Liu L Biotechnol J; 2019 Mar; 14(3):e1800264. PubMed ID: 30105781 [TBL] [Abstract][Full Text] [Related]
6. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Liu Y; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J Metab Eng; 2013 Sep; 19():107-15. PubMed ID: 23876412 [TBL] [Abstract][Full Text] [Related]
7. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. Alvarez-Añorve LI; Calcagno ML; Plumbridge J J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023 [TBL] [Abstract][Full Text] [Related]
8. Optimization of glucose feeding approaches for enhanced glucosamine and N-acetylglucosamine production by an engineered Escherichia coli. Chen X; Liu L; Li J; Liu J; Du G; Chen J J Ind Microbiol Biotechnol; 2012 Feb; 39(2):359-65. PubMed ID: 22009059 [TBL] [Abstract][Full Text] [Related]
9. Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations. Álvarez-Añorve LI; Gaugué I; Link H; Marcos-Viquez J; Díaz-Jiménez DM; Zonszein S; Bustos-Jaimes I; Schmitz-Afonso I; Calcagno ML; Plumbridge J J Bacteriol; 2016 Jun; 198(11):1610-1620. PubMed ID: 27002132 [TBL] [Abstract][Full Text] [Related]
10. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis. Gu Y; Deng J; Liu Y; Li J; Shin HD; Du G; Chen J; Liu L Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731580 [TBL] [Abstract][Full Text] [Related]
11. Biocatalytic Production of Glucosamine from Jiang Z; Lv X; Liu Y; Shin HD; Li J; Du G; Liu L J Microbiol Biotechnol; 2018 Nov; 28(11):1850-1858. PubMed ID: 30086621 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Deng C; Lv X; Liu Y; Li J; Lu W; Du G; Liu L Synth Syst Biotechnol; 2019 Sep; 4(3):120-129. PubMed ID: 31198861 [TBL] [Abstract][Full Text] [Related]
13. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Matano C; Uhde A; Youn JW; Maeda T; Clermont L; Marin K; Krämer R; Wendisch VF; Seibold GM Appl Microbiol Biotechnol; 2014 Jun; 98(12):5633-43. PubMed ID: 24668244 [TBL] [Abstract][Full Text] [Related]
14. Synergetic Fermentation of Glucose and Glycerol for High-Yield N-Acetylglucosamine Production in Wang K; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Bai Y; Huang H; Yao B; Su X; Zhang J Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054959 [TBL] [Abstract][Full Text] [Related]
15. Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. Kalamorz F; Reichenbach B; März W; Rak B; Görke B Mol Microbiol; 2007 Sep; 65(6):1518-33. PubMed ID: 17824929 [TBL] [Abstract][Full Text] [Related]
16. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Deng MD; Severson DK; Grund AD; Wassink SL; Burlingame RP; Berry A; Running JA; Kunesh CA; Song L; Jerrell TA; Rosson RA Metab Eng; 2005 May; 7(3):201-14. PubMed ID: 15885618 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide sequences of the Escherichia coli nagE and nagB genes: the structural genes for the N-acetylglucosamine transport protein of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and for glucosamine-6-phosphate deaminase. Rogers MJ; Ohgi T; Plumbridge J; Söll D Gene; 1988; 62(2):197-207. PubMed ID: 3284790 [TBL] [Abstract][Full Text] [Related]
19. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Liu Y; Zhu Y; Li J; Shin HD; Chen RR; Du G; Liu L; Chen J Metab Eng; 2014 May; 23():42-52. PubMed ID: 24560814 [TBL] [Abstract][Full Text] [Related]
20. NagR Differentially Regulates the Expression of the glmS and nagAB Genes Required for Amino Sugar Metabolism by Streptococcus mutans. Zeng L; Burne RA J Bacteriol; 2015 Nov; 197(22):3533-44. PubMed ID: 26324448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]