These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22712389)
21. Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. Plumbridge J EMBO J; 1995 Aug; 14(16):3958-65. PubMed ID: 7545108 [TBL] [Abstract][Full Text] [Related]
22. Relative susceptibilities of the glucosamine-glucuronic acid and N-acetylglucosamine-glucuronic acid linkages to heparin lyase III. Chai W; Leteux C; Westling C; Lindahl U; Feizi T Biochemistry; 2004 Jul; 43(26):8590-9. PubMed ID: 15222770 [TBL] [Abstract][Full Text] [Related]
23. GlcNAc-6P levels modulate the expression of Curli fibers by Escherichia coli. Barnhart MM; Lynem J; Chapman MR J Bacteriol; 2006 Jul; 188(14):5212-9. PubMed ID: 16816193 [TBL] [Abstract][Full Text] [Related]
24. The small RNA GlmY acts upstream of the sRNA GlmZ in the activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli. Reichenbach B; Maes A; Kalamorz F; Hajnsdorf E; Görke B Nucleic Acids Res; 2008 May; 36(8):2570-80. PubMed ID: 18334534 [TBL] [Abstract][Full Text] [Related]
25. DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli. Plumbridge J Nucleic Acids Res; 2001 Jan; 29(2):506-14. PubMed ID: 11139621 [TBL] [Abstract][Full Text] [Related]
26. Regulation of the Utilization of Amino Sugars by Escherichia coli and Bacillus subtilis: Same Genes, Different Control. Plumbridge J J Mol Microbiol Biotechnol; 2015; 25(2-3):154-67. PubMed ID: 26159076 [TBL] [Abstract][Full Text] [Related]
27. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine. Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558 [TBL] [Abstract][Full Text] [Related]
28. Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Ishikawa M; Koizumi S Carbohydr Res; 2010 Dec; 345(18):2605-9. PubMed ID: 20971455 [TBL] [Abstract][Full Text] [Related]
29. N-acetyl-d-glucosamine induces the expression of multidrug exporter genes, mdtEF, via catabolite activation in Escherichia coli. Hirakawa H; Inazumi Y; Senda Y; Kobayashi A; Hirata T; Nishino K; Yamaguchi A J Bacteriol; 2006 Aug; 188(16):5851-8. PubMed ID: 16885453 [TBL] [Abstract][Full Text] [Related]
30. [Production of L-lactic acid from pentose by a genetically engineered Escherichia coli]. Zhao J; Xu L; Wang Y; Zhao X; Wang J Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):328-37. PubMed ID: 23858707 [TBL] [Abstract][Full Text] [Related]
31. Dual inducer signal recognition by an Mlc homologue. Bréchemier-Baey D; Pennetier C; Plumbridge J Microbiology (Reading); 2015 Aug; 161(8):1694-1706. PubMed ID: 26293172 [TBL] [Abstract][Full Text] [Related]
32. Allosteric regulation of glucosamine-6-phosphate deaminase (NagB) and growth of Escherichia coli on glucosamine. Alvarez-Añorve LI; Bustos-Jaimes I; Calcagno ML; Plumbridge J J Bacteriol; 2009 Oct; 191(20):6401-7. PubMed ID: 19700525 [TBL] [Abstract][Full Text] [Related]
33. [Regulation of key enzymes in tryptophan biosynthesis pathway in Escherichia coli]. Yu J; Wang J; Li J; Guo C; Huang Y; Xu Q Sheng Wu Gong Cheng Xue Bao; 2008 May; 24(5):844-50. PubMed ID: 18724706 [TBL] [Abstract][Full Text] [Related]
34. [Effects of gene pta disruption on L-tryptophan fermentation]. Huang J; Shi J; Liu Q; Xu Q; Xie X; Wen T; Chen N Wei Sheng Wu Xue Bao; 2011 Apr; 51(4):480-7. PubMed ID: 21796982 [TBL] [Abstract][Full Text] [Related]
35. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans. Raczynska J; Olchowy J; Konariev PV; Svergun DI; Milewski S; Rypniewski W J Mol Biol; 2007 Sep; 372(3):672-88. PubMed ID: 17681543 [TBL] [Abstract][Full Text] [Related]
36. Production of N-acetyl-D-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase and Escherichia coli N-acetyl-D-neuraminic acid lyase. Lee YC; Chien HC; Hsu WH J Biotechnol; 2007 May; 129(3):453-60. PubMed ID: 17349707 [TBL] [Abstract][Full Text] [Related]
37. Efficient production of D-glucosamine by diacetylchitobiose deacetylase catalyzed deacetylation of N-acetyl-D-glucosamine. Wang L; Hu M; Tao Y Biotechnol Lett; 2022 Mar; 44(3):473-483. PubMed ID: 35072843 [TBL] [Abstract][Full Text] [Related]
38. Directed evolution and characterization of Escherichia coli glucosamine synthase. Deng MD; Grund AD; Wassink SL; Peng SS; Nielsen KL; Huckins BD; Burlingame RP Biochimie; 2006 May; 88(5):419-29. PubMed ID: 16871653 [TBL] [Abstract][Full Text] [Related]
39. Genetic engineering of Escherichia coli to enhance production of L-tryptophan. Wang J; Cheng LK; Wang J; Liu Q; Shen T; Chen N Appl Microbiol Biotechnol; 2013 Sep; 97(17):7587-96. PubMed ID: 23775271 [TBL] [Abstract][Full Text] [Related]
40. [Effect of different carbon sources on pyruvic acid production by using lpdA gene knockout Escherichia coli]. Shen D; Feng X; Lin D; Yao S Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1345-51. PubMed ID: 19938477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]