These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22712559)

  • 1. Robust and flexible response of the Ostreococcus tauri circadian clock to light/dark cycles of varying photoperiod.
    Thommen Q; Pfeuty B; Corellou F; Bouget FY; Lefranc M
    FEBS J; 2012 Sep; 279(18):3432-48. PubMed ID: 22712559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian clocks in changing weather and seasons: lessons from the picoalga Ostreococcus tauri.
    Pfeuty B; Thommen Q; Corellou F; Djouani-Tahri el B; Bouget FY; Lefranc M
    Bioessays; 2012 Sep; 34(9):781-90. PubMed ID: 22806346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock.
    Morant PE; Thommen Q; Pfeuty B; Vandermoere C; Corellou F; Bouget FY; Lefranc M
    Chaos; 2010 Dec; 20(4):045108. PubMed ID: 21198120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple light inputs to a simple clock circuit allow complex biological rhythms.
    Troein C; Corellou F; Dixon LE; van Ooijen G; O'Neill JS; Bouget FY; Millar AJ
    Plant J; 2011 Apr; 66(2):375-85. PubMed ID: 21219507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote ostreococcus.
    Corellou F; Schwartz C; Motta JP; Djouani-Tahri el B; Sanchez F; Bouget FY
    Plant Cell; 2009 Nov; 21(11):3436-49. PubMed ID: 19948792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri.
    Thommen Q; Pfeuty B; Morant PE; Corellou F; Bouget FY; Lefranc M
    PLoS Comput Biol; 2010 Nov; 6(11):e1000990. PubMed ID: 21085637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-dependent regulation of cell division in Ostreococcus: evidence for a major transcriptional input.
    Moulager M; Monnier A; Jesson B; Bouvet R; Mosser J; Schwartz C; Garnier L; Corellou F; Bouget FY
    Plant Physiol; 2007 Jul; 144(3):1360-9. PubMed ID: 17535824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light and circadian regulation of clock components aids flexible responses to environmental signals.
    Dixon LE; Hodge SK; van Ooijen G; Troein C; Akman OE; Millar AJ
    New Phytol; 2014 Jul; 203(2):568-577. PubMed ID: 24842166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional versus non-transcriptional clocks: a case study in Ostreococcus.
    Bouget FY; Lefranc M; Thommen Q; Pfeuty B; Lozano JC; Schatt P; Botebol H; Vergé V
    Mar Genomics; 2014 Apr; 14():17-22. PubMed ID: 24512973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing entrainment of Ostreococcus tauri circadian clock by green and blue light through a mathematical modeling approach.
    Thommen Q; Pfeuty B; Schatt P; Bijoux A; Bouget FY; Lefranc M
    Front Genet; 2015; 6():65. PubMed ID: 25774167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes.
    Heijde M; Zabulon G; Corellou F; Ishikawa T; Brazard J; Usman A; Sanchez F; Plaza P; Martin M; Falciatore A; Todo T; Bouget FY; Bowler C
    Plant Cell Environ; 2010 Oct; 33(10):1614-26. PubMed ID: 20444223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding.
    Polidarová L; Sládek M; Soták M; Pácha J; Sumová A
    Chronobiol Int; 2011 Apr; 28(3):204-15. PubMed ID: 21452916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoperiod sensitivity of the Arabidopsis circadian clock is tissue-specific.
    Shimizu H; Araki T; Endo M
    Plant Signal Behav; 2015; 10(6):e1010933. PubMed ID: 26176897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene.
    Ito S; Kawamura H; Niwa Y; Nakamichi N; Yamashino T; Mizuno T
    Plant Cell Physiol; 2009 Feb; 50(2):290-303. PubMed ID: 19098071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond Arabidopsis: the circadian clock in non-model plant species.
    McClung CR
    Semin Cell Dev Biol; 2013 May; 24(5):430-6. PubMed ID: 23466287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A eukaryotic LOV-histidine kinase with circadian clock function in the picoalga Ostreococcus.
    Djouani-Tahri el-B; Christie JM; Sanchez-Ferandin S; Sanchez F; Bouget FY; Corellou F
    Plant J; 2011 Feb; 65(4):578-88. PubMed ID: 21235644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The plant circadian clock looks like a traditional Japanese clock rather than a modern Western clock.
    Mizuno T; Yamashino T
    Plant Signal Behav; 2015; 10(12):e1087630. PubMed ID: 26382718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.
    Niwa Y; Yamashino T; Mizuno T
    Plant Cell Physiol; 2009 Apr; 50(4):838-54. PubMed ID: 19233867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitude of circadian oscillations entrained by 24-h light-dark cycles.
    Kurosawa G; Goldbeter A
    J Theor Biol; 2006 Sep; 242(2):478-88. PubMed ID: 16678857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteasome function is required for biological timing throughout the twenty-four hour cycle.
    van Ooijen G; Dixon LE; Troein C; Millar AJ
    Curr Biol; 2011 May; 21(10):869-75. PubMed ID: 21530263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.