BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22712604)

  • 1. Distribution of phthalocyanines and Raman reporters in human cancerous and noncancerous breast tissue as studied by Raman imaging.
    Brozek-Pluska B; Jarota A; Jablonska-Gajewicz J; Kordek R; Czajkowski W; Abramczyk H
    Technol Cancer Res Treat; 2012 Aug; 11(4):317-31. PubMed ID: 22712604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncologic photodynamic diagnosis and therapy: confocal Raman/fluorescence imaging of metal phthalocyanines in human breast cancer tissue in vitro.
    Abramczyk H; Brozek-Pluska B; Surmacki J; Musial J; Kordek R
    Analyst; 2014 Nov; 139(21):5547-59. PubMed ID: 25203552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman microspectroscopy of Hematoporphyrins. Imaging of the noncancerous and the cancerous human breast tissues with photosensitizers.
    Brozek-Pluska B; Kopec M
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Dec; 169():182-91. PubMed ID: 27376758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopy and imaging: applications in human breast cancer diagnosis.
    Brozek-Pluska B; Musial J; Kordek R; Bailo E; Dieing T; Abramczyk H
    Analyst; 2012 Aug; 137(16):3773-80. PubMed ID: 22754917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond Warburg effect.
    Surmacki J; Brozek-Pluska B; Kordek R; Abramczyk H
    Analyst; 2015 Apr; 140(7):2121-33. PubMed ID: 25615557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman 'optical biopsy' of human breast cancer.
    Abramczyk H; Brozek-Pluska B; Surmacki J; Jablonska-Gajewicz J; Kordek R
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):74-81. PubMed ID: 22122914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transitions in oleic acid and in human breast tissue as studied by Raman spectroscopy and Raman imaging.
    Brozek-Pluska B; Jablonska-Gajewicz J; Kordek R; Abramczyk H
    J Med Chem; 2011 May; 54(9):3386-92. PubMed ID: 21476494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc Phthalocyanine Photochemistry by Raman Imaging, Fluorescence Spectroscopy and Femtosecond Spectroscopy in Normal and Cancerous Human Colon Tissues and Single Cells.
    Brozek-Pluska B; Jarota A; Kania R; Abramczyk H
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32531903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear imaging potential and in vitro photodynamic activity of symmetrical and asymmetrical zinc phthalocyanines.
    Yurt Lambrecht F; Ocakoglu K; Er O; Ince M; Gunduz C; Kayabası C
    J Labelled Comp Radiopharm; 2016 May; 59(5):221-7. PubMed ID: 27059543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation between cancerous and normal hyperplastic lobules in breast lesions.
    Slater M; Danieletto S; Pooley M; Cheng Teh L; Gidley-Baird A; Barden JA
    Breast Cancer Res Treat; 2004 Jan; 83(1):1-10. PubMed ID: 14997049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman and Raman spectroscopy for breast cancer detection.
    Liu CH; Zhou Y; Sun Y; Li JY; Zhou LX; Boydston-White S; Masilamani V; Zhu K; Pu Y; Alfano RR
    Technol Cancer Res Treat; 2013 Aug; 12(4):371-82. PubMed ID: 23448574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular uptake and fluorescence imaging potential in tumor cell of zinc phthalocyanine.
    Avşar G; Sari FA; Yuzer AC; Soylu HM; Er O; Ince M; Lambrecht FY
    Int J Pharm; 2016 May; 505(1-2):369-75. PubMed ID: 27085647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and photodynamic effect of zinc phthalocyanine disulfonate in nude mice bearing mammary carcinoma.
    Mosa M; Zitko M; Poucková P
    Neoplasma; 1997; 44(3):178-83. PubMed ID: 9372860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of breast cancer from benign tumours using Raman spectroscopy.
    Lyng FM; Traynor D; Nguyen TNQ; Meade AD; Rakib F; Al-Saady R; Goormaghtigh E; Al-Saad K; Ali MH
    PLoS One; 2019; 14(2):e0212376. PubMed ID: 30763392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standardized in situ AgNOR analysis in breast pathology: diagnostic and cell kinetic implications.
    Bànkfalvi A; Ofner D; Schmid KW; Schmitz KJ; Breukelmann D; Krech R; Böcker W
    Pathol Res Pract; 1999; 195(4):219-29. PubMed ID: 10337659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological activities of phthalocyanines--XV. Radiolabeling of the differently sulfonated 67Ga-phthalocyanines for photodynamic therapy and tumor imaging.
    Scasnár V; van Lier JE
    Nucl Med Biol; 1993 Apr; 20(3):257-62. PubMed ID: 8485484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman microspectroscopy of noncancerous and cancerous human breast tissues. Identification and phase transitions of linoleic and oleic acids by Raman low-temperature studies.
    Brozek-Pluska B; Kopec M; Surmacki J; Abramczyk H
    Analyst; 2015 Apr; 140(7):2134-43. PubMed ID: 25722994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.
    Depciuch J; Kaznowska E; Zawlik I; Wojnarowska R; Cholewa M; Heraud P; Cebulski J
    Appl Spectrosc; 2016 Feb; 70(2):251-63. PubMed ID: 26903561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman imaging at biological interfaces: applications in breast cancer diagnosis.
    Surmacki J; Musial J; Kordek R; Abramczyk H
    Mol Cancer; 2013 May; 12():48. PubMed ID: 23705882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodynamic therapy of intracranial tissues: a preclinical comparative study of four different photosensitizers.
    Lilge L; Wilson BC
    J Clin Laser Med Surg; 1998 Apr; 16(2):81-91. PubMed ID: 9663099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.