These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 22712604)
1. Distribution of phthalocyanines and Raman reporters in human cancerous and noncancerous breast tissue as studied by Raman imaging. Brozek-Pluska B; Jarota A; Jablonska-Gajewicz J; Kordek R; Czajkowski W; Abramczyk H Technol Cancer Res Treat; 2012 Aug; 11(4):317-31. PubMed ID: 22712604 [TBL] [Abstract][Full Text] [Related]
2. Oncologic photodynamic diagnosis and therapy: confocal Raman/fluorescence imaging of metal phthalocyanines in human breast cancer tissue in vitro. Abramczyk H; Brozek-Pluska B; Surmacki J; Musial J; Kordek R Analyst; 2014 Nov; 139(21):5547-59. PubMed ID: 25203552 [TBL] [Abstract][Full Text] [Related]
3. Raman microspectroscopy of Hematoporphyrins. Imaging of the noncancerous and the cancerous human breast tissues with photosensitizers. Brozek-Pluska B; Kopec M Spectrochim Acta A Mol Biomol Spectrosc; 2016 Dec; 169():182-91. PubMed ID: 27376758 [TBL] [Abstract][Full Text] [Related]
4. Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Brozek-Pluska B; Musial J; Kordek R; Bailo E; Dieing T; Abramczyk H Analyst; 2012 Aug; 137(16):3773-80. PubMed ID: 22754917 [TBL] [Abstract][Full Text] [Related]
5. The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond Warburg effect. Surmacki J; Brozek-Pluska B; Kordek R; Abramczyk H Analyst; 2015 Apr; 140(7):2121-33. PubMed ID: 25615557 [TBL] [Abstract][Full Text] [Related]
6. Raman 'optical biopsy' of human breast cancer. Abramczyk H; Brozek-Pluska B; Surmacki J; Jablonska-Gajewicz J; Kordek R Prog Biophys Mol Biol; 2012 Jan; 108(1-2):74-81. PubMed ID: 22122914 [TBL] [Abstract][Full Text] [Related]
7. Phase transitions in oleic acid and in human breast tissue as studied by Raman spectroscopy and Raman imaging. Brozek-Pluska B; Jablonska-Gajewicz J; Kordek R; Abramczyk H J Med Chem; 2011 May; 54(9):3386-92. PubMed ID: 21476494 [TBL] [Abstract][Full Text] [Related]
8. Zinc Phthalocyanine Photochemistry by Raman Imaging, Fluorescence Spectroscopy and Femtosecond Spectroscopy in Normal and Cancerous Human Colon Tissues and Single Cells. Brozek-Pluska B; Jarota A; Kania R; Abramczyk H Molecules; 2020 Jun; 25(11):. PubMed ID: 32531903 [TBL] [Abstract][Full Text] [Related]
9. Nuclear imaging potential and in vitro photodynamic activity of symmetrical and asymmetrical zinc phthalocyanines. Yurt Lambrecht F; Ocakoglu K; Er O; Ince M; Gunduz C; Kayabası C J Labelled Comp Radiopharm; 2016 May; 59(5):221-7. PubMed ID: 27059543 [TBL] [Abstract][Full Text] [Related]
10. Differentiation between cancerous and normal hyperplastic lobules in breast lesions. Slater M; Danieletto S; Pooley M; Cheng Teh L; Gidley-Baird A; Barden JA Breast Cancer Res Treat; 2004 Jan; 83(1):1-10. PubMed ID: 14997049 [TBL] [Abstract][Full Text] [Related]
11. Resonance Raman and Raman spectroscopy for breast cancer detection. Liu CH; Zhou Y; Sun Y; Li JY; Zhou LX; Boydston-White S; Masilamani V; Zhu K; Pu Y; Alfano RR Technol Cancer Res Treat; 2013 Aug; 12(4):371-82. PubMed ID: 23448574 [TBL] [Abstract][Full Text] [Related]
12. Intracellular uptake and fluorescence imaging potential in tumor cell of zinc phthalocyanine. Avşar G; Sari FA; Yuzer AC; Soylu HM; Er O; Ince M; Lambrecht FY Int J Pharm; 2016 May; 505(1-2):369-75. PubMed ID: 27085647 [TBL] [Abstract][Full Text] [Related]
13. Distribution and photodynamic effect of zinc phthalocyanine disulfonate in nude mice bearing mammary carcinoma. Mosa M; Zitko M; Poucková P Neoplasma; 1997; 44(3):178-83. PubMed ID: 9372860 [TBL] [Abstract][Full Text] [Related]
14. Discrimination of breast cancer from benign tumours using Raman spectroscopy. Lyng FM; Traynor D; Nguyen TNQ; Meade AD; Rakib F; Al-Saady R; Goormaghtigh E; Al-Saad K; Ali MH PLoS One; 2019; 14(2):e0212376. PubMed ID: 30763392 [TBL] [Abstract][Full Text] [Related]
15. Standardized in situ AgNOR analysis in breast pathology: diagnostic and cell kinetic implications. Bànkfalvi A; Ofner D; Schmid KW; Schmitz KJ; Breukelmann D; Krech R; Böcker W Pathol Res Pract; 1999; 195(4):219-29. PubMed ID: 10337659 [TBL] [Abstract][Full Text] [Related]
16. Biological activities of phthalocyanines--XV. Radiolabeling of the differently sulfonated 67Ga-phthalocyanines for photodynamic therapy and tumor imaging. Scasnár V; van Lier JE Nucl Med Biol; 1993 Apr; 20(3):257-62. PubMed ID: 8485484 [TBL] [Abstract][Full Text] [Related]
17. Raman microspectroscopy of noncancerous and cancerous human breast tissues. Identification and phase transitions of linoleic and oleic acids by Raman low-temperature studies. Brozek-Pluska B; Kopec M; Surmacki J; Abramczyk H Analyst; 2015 Apr; 140(7):2134-43. PubMed ID: 25722994 [TBL] [Abstract][Full Text] [Related]
18. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer. Depciuch J; Kaznowska E; Zawlik I; Wojnarowska R; Cholewa M; Heraud P; Cebulski J Appl Spectrosc; 2016 Feb; 70(2):251-63. PubMed ID: 26903561 [TBL] [Abstract][Full Text] [Related]
19. Photodynamic therapy of intracranial tissues: a preclinical comparative study of four different photosensitizers. Lilge L; Wilson BC J Clin Laser Med Surg; 1998 Apr; 16(2):81-91. PubMed ID: 9663099 [TBL] [Abstract][Full Text] [Related]
20. Raman imaging at biological interfaces: applications in breast cancer diagnosis. Surmacki J; Musial J; Kordek R; Abramczyk H Mol Cancer; 2013 May; 12():48. PubMed ID: 23705882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]