These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 22713058)

  • 1. Nonstandard cages in the formation process of methane clathrate: stability, structure, and spectroscopic implications from first-principles.
    Tang L; Su Y; Liu Y; Zhao J; Qiu R
    J Chem Phys; 2012 Jun; 136(22):224508. PubMed ID: 22713058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectra of vibrational and librational modes in methane clathrate hydrates using density functional theory.
    Ramya KR; Pavan Kumar GV; Venkatnathan A
    J Chem Phys; 2012 May; 136(17):174305. PubMed ID: 22583228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures, Stabilities, and Spectra Properties of Fused CH4 Endohedral Water Cage (CH4)m(H2O)n Clusters from DFT-D Methods.
    Tang L; Shi R; Su Y; Zhao J
    J Phys Chem A; 2015 Nov; 119(44):10971-9. PubMed ID: 26467394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural growth behavior and polarizability of Cd(n)Te(n) (n=1-14) clusters.
    Wang J; Ma L; Zhao J; Jackson KA
    J Chem Phys; 2009 Jun; 130(21):214307. PubMed ID: 19508069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the viability of small endohedral hydrocarbon cage complexes: X@C4H4, X@C8H8, X@C8H14, X@C10H16, X@C12H12, AND X@C16H16.
    Moran D; Woodcock HL; Chen Z; Schaefer HF; Schleyer PV
    J Am Chem Soc; 2003 Sep; 125(37):11442-51. PubMed ID: 16220967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cage fusion from bi-cages to tri-cages during nucleation of methane hydrate: a DFT-D simulation.
    Li K; Shi R; Tang L; Huang Y; Cao X; Su Y
    Phys Chem Chem Phys; 2019 May; 21(18):9150-9158. PubMed ID: 30675605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cages, dynamics, and structuring of incipient methane clathrate hydrates.
    Walsh MR; Rainey JD; Lafond PG; Park DH; Beckham GT; Jones MD; Lee KH; Koh CA; Sloan ED; Wu DT; Sum AK
    Phys Chem Chem Phys; 2011 Nov; 13(44):19951-9. PubMed ID: 21997437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study.
    Popov AA; Dunsch L
    J Am Chem Soc; 2007 Sep; 129(38):11835-49. PubMed ID: 17760444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability and reactivity of methane clathrate hydrates: insights from density functional theory.
    Ramya KR; Venkatnathan A
    J Phys Chem A; 2012 Jul; 116(29):7742-5. PubMed ID: 22738177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane-water clusters under pressure: are clathrate cages optimal clusters?
    Hartke B
    J Chem Phys; 2009 Jan; 130(2):024905. PubMed ID: 19154054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations.
    Ruckenstein E; Shulgin IL; Tilson JL
    J Phys Chem A; 2005 Feb; 109(5):807-15. PubMed ID: 16838951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si(39), Si(40), Si(50), Si(60), Si(70), and Si(80).
    Yoo S; Shao N; Zeng XC
    J Chem Phys; 2008 Mar; 128(10):104316. PubMed ID: 18345897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the geometries and dissociation energies of molecular water on neutral aluminum clusters Al(n) (n = 2-25).
    Liu Y; Hua Y; Jiang M; Jiang G; Chen J
    J Chem Phys; 2012 Feb; 136(8):084703. PubMed ID: 22380055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane molecule confined in the small and large cages of structure I clathrate hydrate: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates.
    Matanović I; Xu M; Moskowitz JW; Eckert J; Bacić Z
    J Chem Phys; 2009 Dec; 131(22):224308. PubMed ID: 20001037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation pathways of clathrate hydrates: effect of guest size and solubility.
    Jacobson LC; Hujo W; Molinero V
    J Phys Chem B; 2010 Nov; 114(43):13796-807. PubMed ID: 20931990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational modes of methane in the structure H clathrate hydrate from ab initio molecular dynamics simulation.
    Hiratsuka M; Ohmura R; Sum AK; Yasuoka K
    J Chem Phys; 2012 Oct; 137(14):144306. PubMed ID: 23061847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A note on transformation between clathrate hydrate structures I and II.
    Yoshioki S
    J Mol Graph Model; 2010 Sep; 29(2):290-4. PubMed ID: 20646941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and NMR Chemical Shift of Amorphous Precursors of Methane Hydrate: Insights from Dispersion-Corrected Density Functional Theory Calculations Combined with Machine Learning.
    Li K; Wang P; Tang L; Shi R; Su Y; Zhao J
    J Phys Chem B; 2021 Jan; 125(1):431-441. PubMed ID: 33356268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane clathrate: CH(4) quantum rotor state dependent rattling potential.
    Prager M; Press W
    J Chem Phys; 2006 Dec; 125(21):214703. PubMed ID: 17166036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.