These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 22713172)

  • 1. Improving metabolic flux predictions using absolute gene expression data.
    Lee D; Smallbone K; Dunn WB; Murabito E; Winder CL; Kell DB; Mendes P; Swainston N
    BMC Syst Biol; 2012 Jun; 6():73. PubMed ID: 22713172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function.
    Zhang SW; Gou WL; Li Y
    Mol Biosyst; 2017 May; 13(5):901-909. PubMed ID: 28338129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.
    Song HS; Reifman J; Wallqvist A
    PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.
    Kim MK; Lane A; Kelley JJ; Lun DS
    PLoS One; 2016; 11(6):e0157101. PubMed ID: 27327084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p.
    Moxley JF; Jewett MC; Antoniewicz MR; Villas-Boas SG; Alper H; Wheeler RT; Tong L; Hinnebusch AG; Ideker T; Nielsen J; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6477-82. PubMed ID: 19346491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium.
    D'Huys PJ; Lule I; Vercammen D; Anné J; Van Impe JF; Bernaerts K
    J Biotechnol; 2012 Sep; 161(1):1-13. PubMed ID: 22641041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic flux distributions: genetic information, computational predictions, and experimental validation.
    Blank LM; Kuepfer L
    Appl Microbiol Biotechnol; 2010 May; 86(5):1243-55. PubMed ID: 20232063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.
    Park JM; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14931-6. PubMed ID: 20679215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational prediction of essential metabolic genes using constraint-based approaches.
    Basler G
    Methods Mol Biol; 2015; 1279():183-204. PubMed ID: 25636620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of genome-scale metabolic network reconstruction to predict fluxes and equilibrium composition of N-fixing versus C-fixing cells in a diazotrophic cyanobacterium, Trichodesmium erythraeum.
    Gardner JJ; Boyle NR
    BMC Syst Biol; 2017 Jan; 11(1):4. PubMed ID: 28103880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational method using differential gene expression to predict altered metabolism of multicellular organisms.
    Zhu L; Zheng H; Hu X; Xu Y
    Mol Biosyst; 2017 Oct; 13(11):2418-2427. PubMed ID: 28972214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting biological system objectives de novo from internal state measurements.
    Gianchandani EP; Oberhardt MA; Burgard AP; Maranas CD; Papin JA
    BMC Bioinformatics; 2008 Jan; 9():43. PubMed ID: 18218092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion of maintenance energy improves the intracellular flux predictions of CHO.
    Széliová D; Štor J; Thiel I; Weinguny M; Hanscho M; Lhota G; Borth N; Zanghellini J; Ruckerbauer DE; Rocha I
    PLoS Comput Biol; 2021 Jun; 17(6):e1009022. PubMed ID: 34115746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiologically Shrinking the Solution Space of a Saccharomyces cerevisiae Genome-Scale Model Suggests the Role of the Metabolic Network in Shaping Gene Expression Noise.
    Chi B; Tao S; Liu Y
    PLoS One; 2015; 10(10):e0139590. PubMed ID: 26448560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connecting extracellular metabolomic measurements to intracellular flux states in yeast.
    Mo ML; Palsson BO; Herrgård MJ
    BMC Syst Biol; 2009 Mar; 3():37. PubMed ID: 19321003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the associations between transcript levels and fluxes in constraint-based models of metabolism.
    Sinha N; van Schothorst EM; Hooiveld GJEJ; Keijer J; Martins Dos Santos VAP; Suarez-Diez M
    BMC Bioinformatics; 2021 Nov; 22(1):574. PubMed ID: 34839828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis.
    Tian M; Reed JL
    Bioinformatics; 2018 Nov; 34(22):3882-3888. PubMed ID: 29878053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux configuration determination using information entropy.
    Rivas-Astroza M; Conejeros R
    PLoS One; 2020; 15(12):e0243067. PubMed ID: 33275628
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.