BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22713314)

  • 1. Analyzing ATP utilization by DEAD-Box RNA helicases using kinetic and equilibrium methods.
    Bradley MJ; De La Cruz EM
    Methods Enzymol; 2012; 511():29-63. PubMed ID: 22713314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ATPase cycle mechanism of the DEAD-box rRNA helicase, DbpA.
    Henn A; Cao W; Hackney DD; De La Cruz EM
    J Mol Biol; 2008 Mar; 377(1):193-205. PubMed ID: 18237742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA.
    Henn A; Cao W; Licciardello N; Heitkamp SE; Hackney DD; De La Cruz EM
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4046-50. PubMed ID: 20160110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP utilization and RNA conformational rearrangement by DEAD-box proteins.
    Henn A; Bradley MJ; De La Cruz EM
    Annu Rev Biophys; 2012; 41():247-67. PubMed ID: 22404686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Mss116 ATPase reveals functional diversity of DEAD-Box proteins.
    Cao W; Coman MM; Ding S; Henn A; Middleton ER; Bradley MJ; Rhoades E; Hackney DD; Pyle AM; De La Cruz EM
    J Mol Biol; 2011 Jun; 409(3):399-414. PubMed ID: 21501623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins.
    Jarmoskaite I; Helmers AE; Russell R
    Methods Enzymol; 2022; 673():53-76. PubMed ID: 35965018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding.
    Liu F; Putnam A; Jankowsky E
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20209-14. PubMed ID: 19088201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMP sensing by DEAD-box RNA helicases.
    Putnam AA; Jankowsky E
    J Mol Biol; 2013 Oct; 425(20):3839-45. PubMed ID: 23702290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium and kinetic analysis of nucleotide binding to the DEAD-box RNA helicase DbpA.
    Talavera MA; De La Cruz EM
    Biochemistry; 2005 Jan; 44(3):959-70. PubMed ID: 15654752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of ATP-dependent RNA unwinding by DEAD box proteins.
    Hilbert M; Karow AR; Klostermeier D
    Biol Chem; 2009 Dec; 390(12):1237-50. PubMed ID: 19747077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-guided mutational analysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing.
    Bifano AL; Turk EM; Caprara MG
    J Mol Biol; 2010 May; 398(3):429-43. PubMed ID: 20307546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DEAD-box RNA helicase domains exhibit a continuum between complete functional independence and high thermodynamic coupling in nucleotide and RNA duplex recognition.
    Samatanga B; Klostermeier D
    Nucleic Acids Res; 2014; 42(16):10644-54. PubMed ID: 25123660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effects of ATP and RNA binding to human DEAD-box protein DDX1.
    Kellner JN; Reinstein J; Meinhart A
    Nucleic Acids Res; 2015 Mar; 43(5):2813-28. PubMed ID: 25690890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of unwinding activity of duplex RNA by DbpA, a DEAD box helicase, at single-molecule resolution by atomic force microscopy.
    Henn A; Medalia O; Shi SP; Steinberg M; Franceschi F; Sagi I
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5007-12. PubMed ID: 11296244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DEAD-box proteins from Escherichia coli exhibit multiple ATP-independent activities.
    Zhao X; Jain C
    J Bacteriol; 2011 May; 193(9):2236-41. PubMed ID: 21378185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the kinetics of RNA annealing and strand displacement activities of the E. coli DEAD-box helicase CsdA.
    Stampfl S; Doetsch M; Beich-Frandsen M; Schroeder R
    RNA Biol; 2013 Jan; 10(1):149-56. PubMed ID: 23291905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DbpA catalytic core unwinds double-helix substrates by directly loading on them.
    Childs JJ; Gentry RC; Moore AF; Koculi E
    RNA; 2016 Mar; 22(3):408-15. PubMed ID: 26755693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing conformational variations at the ATPase site of the RNA helicase DbpA by high-field electron-nuclear double resonance spectroscopy.
    Kaminker I; Sushenko A; Potapov A; Daube S; Akabayov B; Sagi I; Goldfarb D
    J Am Chem Soc; 2011 Oct; 133(39):15514-23. PubMed ID: 21819147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p.
    Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM
    Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of DbpA, an Escherichia coli DEAD box protein with ATP independent RNA unwinding activity.
    Böddeker N; Stade K; Franceschi F
    Nucleic Acids Res; 1997 Feb; 25(3):537-45. PubMed ID: 9016593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.