These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22713314)

  • 21. Single-molecule analysis of Mss116-mediated group II intron folding.
    Karunatilaka KS; Solem A; Pyle AM; Rueda D
    Nature; 2010 Oct; 467(7318):935-9. PubMed ID: 20944626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The DEAD box helicase YxiN maintains a closed conformation during ATP hydrolysis.
    Aregger R; Klostermeier D
    Biochemistry; 2009 Nov; 48(45):10679-81. PubMed ID: 19839642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DEAD-box helicases form nucleotide-dependent, long-lived complexes with RNA.
    Liu F; Putnam AA; Jankowsky E
    Biochemistry; 2014 Jan; 53(2):423-33. PubMed ID: 24367975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DEAD-box proteins unwind duplexes by local strand separation.
    Yang Q; Del Campo M; Lambowitz AM; Jankowsky E
    Mol Cell; 2007 Oct; 28(2):253-63. PubMed ID: 17964264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational changes of DEAD-box helicases monitored by single molecule fluorescence resonance energy transfer.
    Andreou AZ; Klostermeier D
    Methods Enzymol; 2012; 511():75-109. PubMed ID: 22713316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1.
    Banroques J; Doère M; Dreyfus M; Linder P; Tanner NK
    J Mol Biol; 2010 Mar; 396(4):949-66. PubMed ID: 20026132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding.
    Rudolph MG; Klostermeier D
    Biol Chem; 2015 Aug; 396(8):849-65. PubMed ID: 25720120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence methods in the investigation of the DEAD-box helicase mechanism.
    Andreou AZ; Klostermeier D
    Exp Suppl; 2014; 105():161-92. PubMed ID: 25095995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DEAD Box RNA Helicases: Biochemical Properties, Role in RNA Processing and Ribosome Biogenesis.
    Hussain A
    Cell Biochem Biophys; 2024 Jun; 82(2):427-434. PubMed ID: 38430409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis for the activation of the DEAD-box RNA helicase DbpA by the nascent ribosome.
    Wurm JP; Glowacz KA; Sprangers R
    Proc Natl Acad Sci U S A; 2021 Aug; 118(35):. PubMed ID: 34453003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A conserved phenylalanine of motif IV in superfamily 2 helicases is required for cooperative, ATP-dependent binding of RNA substrates in DEAD-box proteins.
    Banroques J; Cordin O; Doère M; Linder P; Tanner NK
    Mol Cell Biol; 2008 May; 28(10):3359-71. PubMed ID: 18332124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. P(I) Release Limits the Intrinsic and RNA-Stimulated ATPase Cycles of DEAD-Box Protein 5 (Dbp5).
    Wong EV; Cao W; Vörös J; Merchant M; Modis Y; Hackney DD; Montpetit B; De La Cruz EM
    J Mol Biol; 2016 Jan; 428(2 Pt B):492-508. PubMed ID: 26730886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DEAD-box-protein-assisted RNA structure conversion towards and against thermodynamic equilibrium values.
    Yang Q; Fairman ME; Jankowsky E
    J Mol Biol; 2007 May; 368(4):1087-100. PubMed ID: 17391697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis for RNA-duplex unwinding by the DEAD-box helicase DbpA.
    Wurm JP
    RNA; 2023 Sep; 29(9):1339-1354. PubMed ID: 37221012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assignment of the Ile, Leu, Val, Met and Ala methyl group resonances of the DEAD-box RNA helicase DbpA from E. coli.
    Wurm JP
    Biomol NMR Assign; 2021 Apr; 15(1):121-128. PubMed ID: 33277687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase.
    Iost I; Dreyfus M; Linder P
    J Biol Chem; 1999 Jun; 274(25):17677-83. PubMed ID: 10364207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The RNA helicase DbpA exhibits a markedly different conformation in the ADP-bound state when compared with the ATP- or RNA-bound states.
    Henn A; Shi SP; Zarivach R; Ben-Zeev E; Sagi I
    J Biol Chem; 2002 Nov; 277(48):46559-65. PubMed ID: 12324462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA.
    Diges CM; Uhlenbeck OC
    EMBO J; 2001 Oct; 20(19):5503-12. PubMed ID: 11574482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cooperative binding of ATP and RNA substrates to the DEAD/H protein DbpA.
    Polach KJ; Uhlenbeck OC
    Biochemistry; 2002 Mar; 41(11):3693-702. PubMed ID: 11888286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.