BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22713317)

  • 21. The brace for a growing scaffold: Mss116 protein promotes RNA folding by stabilizing an early assembly intermediate.
    Fedorova O; Pyle AM
    J Mol Biol; 2012 Sep; 422(3):347-65. PubMed ID: 22705286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Do DEAD-box proteins promote group II intron splicing without unwinding RNA?
    Del Campo M; Tijerina P; Bhaskaran H; Mohr S; Yang Q; Jankowsky E; Russell R; Lambowitz AM
    Mol Cell; 2007 Oct; 28(1):159-66. PubMed ID: 17936712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mss116p: a DEAD-box protein facilitates RNA folding.
    Sachsenmaier N; Waldsich C
    RNA Biol; 2013 Jan; 10(1):71-82. PubMed ID: 23064153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DEAD-box proteins as RNA helicases and chaperones.
    Jarmoskaite I; Russell R
    Wiley Interdiscip Rev RNA; 2011; 2(1):135-52. PubMed ID: 21297876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward a molecular understanding of RNA remodeling by DEAD-box proteins.
    Russell R; Jarmoskaite I; Lambowitz AM
    RNA Biol; 2013 Jan; 10(1):44-55. PubMed ID: 22995827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates.
    Busa VF; Rector MJ; Russell R
    Biochemistry; 2017 Jul; 56(28):3571-3578. PubMed ID: 28650145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function.
    Huang HR; Rowe CE; Mohr S; Jiang Y; Lambowitz AM; Perlman PS
    Proc Natl Acad Sci U S A; 2005 Jan; 102(1):163-8. PubMed ID: 15618406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture.
    Pan C; Potratz JP; Cannon B; Simpson ZB; Ziehr JL; Tijerina P; Russell R
    PLoS Biol; 2014 Oct; 12(10):e1001981. PubMed ID: 25350280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p.
    Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM
    Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro.
    Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DEAD-box protein facilitated RNA folding in vivo.
    Liebeg A; Mayer O; Waldsich C
    RNA Biol; 2010; 7(6):803-11. PubMed ID: 21045551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The kinetics of ribozyme cleavage: a tool to analyze RNA folding as a function of catalysis.
    Zingler N
    Methods Mol Biol; 2014; 1086():209-24. PubMed ID: 24136606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sisyphus observed: Unraveling the high ATP usage of an RNA chaperone.
    Duran EC; Walter NG
    J Biol Chem; 2021; 296():100265. PubMed ID: 33837746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assays for the RNA chaperone activity of proteins.
    Rajkowitsch L; Semrad K; Mayer O; Schroeder R
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):450-6. PubMed ID: 15916539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure of a phage Twort group I ribozyme-product complex.
    Golden BL; Kim H; Chase E
    Nat Struct Mol Biol; 2005 Jan; 12(1):82-9. PubMed ID: 15580277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Duplex unwinding with DEAD-box proteins.
    Jankowsky E; Putnam A
    Methods Mol Biol; 2010; 587():245-64. PubMed ID: 20225155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A chemogenetic approach to study the structural basis of protein-facilitated RNA folding.
    Fedorova O
    Methods Mol Biol; 2014; 1086():177-91. PubMed ID: 24136604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme.
    Su LJ; Brenowitz M; Pyle AM
    J Mol Biol; 2003 Dec; 334(4):639-52. PubMed ID: 14636593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics.
    Chadee AB; Bhaskaran H; Russell R
    J Mol Biol; 2010 Jan; 395(3):656-70. PubMed ID: 19913030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.