These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 22713582)
1. Characterization of dark quencher chromophores as nonfluorescent acceptors for single-molecule FRET. Le Reste L; Hohlbein J; Gryte K; Kapanidis AN Biophys J; 2012 Jun; 102(11):2658-68. PubMed ID: 22713582 [TBL] [Abstract][Full Text] [Related]
2. Small-Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Fang B; Shen Y; Peng B; Bai H; Wang L; Zhang J; Hu W; Fu L; Zhang W; Li L; Huang W Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202207188. PubMed ID: 35852404 [TBL] [Abstract][Full Text] [Related]
3. Detecting molecular interactions in live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA). Graham TGW; Ferrie JJ; Dailey GM; Tjian R; Darzacq X Elife; 2022 Aug; 11():. PubMed ID: 35976226 [TBL] [Abstract][Full Text] [Related]
4. [Development of Novel Dark Quenchers and Their Application to Imaging Probes]. Hanaoka K Yakugaku Zasshi; 2019; 139(2):277-283. PubMed ID: 30713240 [TBL] [Abstract][Full Text] [Related]
5. Single-molecule photophysics of dark quenchers as non-fluorescent FRET acceptors. Holzmeister P; Wünsch B; Gietl A; Tinnefeld P Photochem Photobiol Sci; 2014 Jun; 13(6):853-8. PubMed ID: 24100609 [TBL] [Abstract][Full Text] [Related]
6. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
8. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Lee NK; Kapanidis AN; Koh HR; Korlann Y; Ho SO; Kim Y; Gassman N; Kim SK; Weiss S Biophys J; 2007 Jan; 92(1):303-12. PubMed ID: 17040983 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Kapanidis AN; Lee NK; Laurence TA; Doose S; Margeat E; Weiss S Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8936-41. PubMed ID: 15175430 [TBL] [Abstract][Full Text] [Related]
10. Anomalous surplus energy transfer observed with multiple FRET acceptors. Koushik SV; Blank PS; Vogel SS PLoS One; 2009 Nov; 4(11):e8031. PubMed ID: 19946626 [TBL] [Abstract][Full Text] [Related]
11. Multi-path quenchers: efficient quenching of common fluorophores. Crisalli P; Kool ET Bioconjug Chem; 2011 Nov; 22(11):2345-54. PubMed ID: 22034828 [TBL] [Abstract][Full Text] [Related]
12. 48-spot single-molecule FRET setup with periodic acceptor excitation. Ingargiola A; Segal M; Gulinatti A; Rech I; Labanca I; Maccagnani P; Ghioni M; Weiss S; Michalet X J Chem Phys; 2018 Mar; 148(12):123304. PubMed ID: 29604810 [TBL] [Abstract][Full Text] [Related]
13. Long time scale blinking kinetics of cyanine fluorophores conjugated to DNA and its effect on Förster resonance energy transfer. Sabanayagam CR; Eid JS; Meller A J Chem Phys; 2005 Dec; 123(22):224708. PubMed ID: 16375496 [TBL] [Abstract][Full Text] [Related]
14. Single-molecule photophysics of oxazines on DNA and its application in a FRET switch. Vogelsang J; Cordes T; Tinnefeld P Photochem Photobiol Sci; 2009 Apr; 8(4):486-96. PubMed ID: 19337662 [TBL] [Abstract][Full Text] [Related]
15. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Marras SA; Kramer FR; Tyagi S Nucleic Acids Res; 2002 Nov; 30(21):e122. PubMed ID: 12409481 [TBL] [Abstract][Full Text] [Related]
16. Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes. Myochin T; Hanaoka K; Iwaki S; Ueno T; Komatsu T; Terai T; Nagano T; Urano Y J Am Chem Soc; 2015 Apr; 137(14):4759-65. PubMed ID: 25764154 [TBL] [Abstract][Full Text] [Related]
17. Caging and Photoactivation in Single-Molecule Förster Resonance Energy Transfer Experiments. Jazi AA; Ploetz E; Arizki M; Dhandayuthapani B; Waclawska I; Krämer R; Ziegler C; Cordes T Biochemistry; 2017 Apr; 56(14):2031-2041. PubMed ID: 28362086 [TBL] [Abstract][Full Text] [Related]
18. Single-molecule FRET and linear dichroism studies of DNA breathing and helicase binding at replication fork junctions. Phelps C; Lee W; Jose D; von Hippel PH; Marcus AH Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17320-5. PubMed ID: 24062430 [TBL] [Abstract][Full Text] [Related]
19. A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays. Peng X; Chen H; Draney DR; Volcheck W; Schutz-Geschwender A; Olive DM Anal Biochem; 2009 May; 388(2):220-8. PubMed ID: 19248753 [TBL] [Abstract][Full Text] [Related]
20. Monitoring multiple distances within a single molecule using switchable FRET. Uphoff S; Holden SJ; Le Reste L; Periz J; van de Linde S; Heilemann M; Kapanidis AN Nat Methods; 2010 Oct; 7(10):831-6. PubMed ID: 20818380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]