These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22713735)

  • 1. Can motor volition be extracted from the spinal cord?
    Prasad A; Sahin M
    J Neuroeng Rehabil; 2012 Jun; 9():41. PubMed ID: 22713735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of motor activity from the cervical spinal cord of behaving rats.
    Prasad A; Sahin M
    J Neural Eng; 2006 Dec; 3(4):287-92. PubMed ID: 17124332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Forelimb EMGs and Movement Phases from Corticospinal Signals in the Rat During the Reach-to-Pull Task.
    Gok S; Sahin M
    Int J Neural Syst; 2019 Sep; 29(7):1950009. PubMed ID: 31111753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic recordings from the rat spinal cord descending tracts with microwires.
    Prasad A; Sahin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2993-6. PubMed ID: 22254970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-channel recordings of the motor activity from the spinal cord of behaving rats.
    Prasad A; Sahin M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2288-91. PubMed ID: 17946950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Volitional Electromyographic Signals in the Lower Extremity After Motor Complete Spinal Cord Injury.
    Heald E; Hart R; Kilgore K; Peckham PH
    Neurorehabil Neural Repair; 2017 Jun; 31(6):583-591. PubMed ID: 28443786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Location of spinal cord pathways that control hindlimb movement amplitude and interlimb coordination during voluntary swimming in turtles.
    Samara RF; Currie SN
    J Neurophysiol; 2008 Apr; 99(4):1953-68. PubMed ID: 18272877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats.
    Gad P; Woodbridge J; Lavrov I; Zhong H; Roy RR; Sarrafzadeh M; Edgerton VR
    J Neuroeng Rehabil; 2012 Jun; 9():38. PubMed ID: 22691460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of forelimb muscle EMGs from the corticospinal signals in rats.
    Gok S; Sahin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2780-2783. PubMed ID: 28268895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticospinal signals recorded with MEAs can predict the volitional forearm forces in rats.
    Guo Y; Mesut S; Foulds RA; Adamovich SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1984-7. PubMed ID: 24110105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Experimental study of recording and analysing electrophysiological signals from corticospinal tract in rats].
    Shen WX; Yuan Y; Jiang ZL; Lv GM; Yao J
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2011 May; 27(2):168-72. PubMed ID: 21845863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord recordings in rats during skilled reaching task.
    Prasad A; Sahin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():582-5. PubMed ID: 19963716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encoding of forelimb forces by corticospinal tract activity in the rat.
    Guo Y; Foulds RA; Adamovich SV; Sahin M
    Front Neurosci; 2014; 8():62. PubMed ID: 24847198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonged acute intermittent hypoxia improves forelimb reach-to-grasp function in a rat model of chronic cervical spinal cord injury.
    Arnold BM; Toosi BM; Caine S; Mitchell GS; Muir GD
    Exp Neurol; 2021 Jun; 340():113672. PubMed ID: 33652030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury.
    Kasten MR; Sunshine MD; Secrist ES; Horner PJ; Moritz CT
    J Neural Eng; 2013 Aug; 10(4):044001. PubMed ID: 23715242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical neuromodulation of the cervical spinal cord facilitates forelimb skilled function recovery in spinal cord injured rats.
    Alam M; Garcia-Alias G; Jin B; Keyes J; Zhong H; Roy RR; Gerasimenko Y; Lu DC; Edgerton VR
    Exp Neurol; 2017 May; 291():141-150. PubMed ID: 28192079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cervical dorsolateral funiculotomy on reach-to-grasp function in the rat.
    Stackhouse SK; Murray M; Shumsky JS
    J Neurotrauma; 2008 Aug; 25(8):1039-47. PubMed ID: 18721108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable, long-term single-neuronal recording from the rat spinal cord with flexible carbon nanotube fiber electrodes.
    Liu X; Xu Z; Fu X; Liu Y; Jia H; Yang Z; Zhang J; Wei S; Duan X
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36108593
    [No Abstract]   [Full Text] [Related]  

  • 20. Predictors of volitional motor recovery with epidural stimulation in individuals with chronic spinal cord injury.
    Mesbah S; Ball T; Angeli C; Rejc E; Dietz N; Ugiliweneza B; Harkema S; Boakye M
    Brain; 2021 Mar; 144(2):420-433. PubMed ID: 33367527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.