These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22713735)

  • 21. Predictors of volitional motor recovery with epidural stimulation in individuals with chronic spinal cord injury.
    Mesbah S; Ball T; Angeli C; Rejc E; Dietz N; Ugiliweneza B; Harkema S; Boakye M
    Brain; 2021 Mar; 144(2):420-433. PubMed ID: 33367527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Independent replication of motor cortex and cervical spinal cord electrical stimulation to promote forelimb motor function after spinal cord injury in rats.
    Yang Q; Ramamurthy A; Lall S; Santos J; Ratnadurai-Giridharan S; Lopane M; Zareen N; Alexander H; Ryan D; Martin JH; Carmel JB
    Exp Neurol; 2019 Oct; 320():112962. PubMed ID: 31125548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion.
    Schaal SM; Kitay BM; Cho KS; Lo TP; Barakat DJ; Marcillo AE; Sanchez AR; Andrade CM; Pearse DD
    Cell Transplant; 2007; 16(3):207-28. PubMed ID: 17503734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of neural activity recorded from the descending tracts of the rat spinal cord.
    Prasad A; Sahin M
    Front Neurosci; 2010 Jun; 4():21. PubMed ID: 20589238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forelimb motor performance following dorsal column, dorsolateral funiculi, or ventrolateral funiculi lesions of the cervical spinal cord in the rat.
    Schrimsher GW; Reier PJ
    Exp Neurol; 1993 Apr; 120(2):264-76. PubMed ID: 8491282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graded unilateral cervical spinal cord injury in the rat: evaluation of forelimb recovery and histological effects.
    Soblosky JS; Song JH; Dinh DH
    Behav Brain Res; 2001 Feb; 119(1):1-13. PubMed ID: 11164520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-directed rehabilitation training intensity thresholds for efficient recovery of skilled forelimb function in rats with cervical spinal cord injury.
    Fenrich KK; Hallworth BW; Vavrek R; Raposo PJF; Misiaszek JE; Bennett DJ; Fouad K; Torres-Espin A
    Exp Neurol; 2021 May; 339():113543. PubMed ID: 33290776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel command signal for motor neuroprosthetic control.
    Moss CW; Kilgore KL; Peckham PH
    Neurorehabil Neural Repair; 2011; 25(9):847-54. PubMed ID: 21693772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Descending pathways eliciting forelimb stepping in the lateral funiculus: experimental studies with stimulation and lesion of the cervical cord in decerebrate cats.
    Yamaguchi T
    Brain Res; 1986 Jul; 379(1):125-36. PubMed ID: 3742207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats.
    Alam M; Garcia-Alias G; Shah PK; Gerasimenko Y; Zhong H; Roy RR; Edgerton VR
    J Neurosci Methods; 2015 May; 247():50-7. PubMed ID: 25791014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brainstem command systems for locomotion in the lamprey: localization of descending pathways in the spinal cord.
    McClellan AD
    Brain Res; 1988 Aug; 457(2):338-49. PubMed ID: 3219560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase-dependent deficits during reach-to-grasp after human spinal cord injury.
    Lei Y; Perez MA
    J Neurophysiol; 2018 Jan; 119(1):251-261. PubMed ID: 28931614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated lever task with minimum antigravity movement for rats with cervical spinal cord injury.
    Samejima S; Ievins AM; Boissenin A; Tolley NM; Khorasani A; Mondello SE; Moritz CT
    J Neurosci Methods; 2022 Jan; 366():109433. PubMed ID: 34863839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Descending pathways modulating the spinal circuitry for ejaculation: effects of chronic spinal cord injury.
    Johnson RD
    Prog Brain Res; 2006; 152():415-26. PubMed ID: 16198717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury.
    Maegele M; Müller S; Wernig A; Edgerton VR; Harkema SJ
    J Neurotrauma; 2002 Oct; 19(10):1217-29. PubMed ID: 12427330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal pathways involved in the control of forelimb motor function in rats.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2007 Aug; 206(2):318-31. PubMed ID: 17603042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.