These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 2271403)

  • 1. On the optimality principle in a bio-flow absorption system: an analysis of the Jmax-Kt relationship in the proximal tubule of the kidney.
    Yokoyama R; Hoshi T
    Front Med Biol Eng; 1990; 2(1):23-35. PubMed ID: 2271403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport.
    Larsen EH; Møbjerg N; Sørensen JN
    Acta Physiol (Oxf); 2006; 187(1-2):177-89. PubMed ID: 16734754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transimmortalized proximal tubule and collecting duct cell lines derived from the kidneys of transgenic mice.
    Chassin C; Bens M; Vandewalle A
    Cell Biol Toxicol; 2007 Jul; 23(4):257-66. PubMed ID: 17219250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Microperfusion and electrophysiologic study of the proximal tubules of Triturus vulgaris and rat kidneys].
    Pokrovskiĭ VG
    Zh Evol Biokhim Fiziol; 1980; 16(4):336-41. PubMed ID: 7424296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interference with feedback control of glomerular filtration rate by furosemide, triflocin, and cyanide.
    Wright FS; Schnermann J
    J Clin Invest; 1974 Jun; 53(6):1695-708. PubMed ID: 4830232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH--dependence of phosphate absorption in rat renal proximal tubule.
    Samarzija I; Molnar V; Frömter E
    Proc Eur Dial Transplant Assoc; 1983; 19():779-83. PubMed ID: 6878264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Transport of chlorine in the proximal tubule. Its effects on water-electrolyte absorption].
    Anagnostopoulos T; Edelman A; Planelles G; Teulon J; Thomas SR
    J Physiol (Paris); 1984; 79(3):132-8. PubMed ID: 6381694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracer microinjection study of renal tubular phosphate reabsorption in the rat.
    Staum BB; Hamburger RJ; Goldberg M
    J Clin Invest; 1972 Sep; 51(9):2271-6. PubMed ID: 4639013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of sodium, potassium and chloride transport by the renal distal tubule.
    Ellison DH; Velázquez H; Wright FS
    Miner Electrolyte Metab; 1987; 13(6):422-32. PubMed ID: 3320724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mathematical model of fluid transport in the convoluted portion of the proximal kidney tubules and surrounding capillaries].
    Kisliakov IuIa
    Biofizika; 1984; 29(4):676-80. PubMed ID: 6091787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NTP Toxicology and Carcinogenesis Studies of 1-Amino-2,4-Dibromoanthraquinone (CAS No. 81-49-2) in F344/N Rats and B6C3F1 Mice (Feed Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1996 Aug; 383():1-370. PubMed ID: 12692653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atractyloside nephrotoxicity: in vitro studies with suspensions of rat renal fragments and precision-cut cortical slices.
    Obatomi DK; Bach PH
    In Vitr Mol Toxicol; 2000; 13(1):25-36. PubMed ID: 10900405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Intracerebroventricular administration of hypertonic saline inhibits the reabsorption of water and sodium in the proximal tubule].
    He XR; Zhang JF; Yao T
    Sheng Li Xue Bao; 1989 Oct; 41(5):421-7. PubMed ID: 2602950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modeling study of solute reabsorption along rat proximal tubule.
    Thomas SR; Dagher G
    Acta Biotheor; 1993 Jun; 41(1-2):35-41. PubMed ID: 8266744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [On the relation between reaction velocity parameters and concentration profile of absorbed solutes in a biological flow-absorption system (author's transl)].
    Yokoyama R; Hoshi T
    Iyodenshi To Seitai Kogaku; 1978 Oct; 16(6):373-7. PubMed ID: 739645
    [No Abstract]   [Full Text] [Related]  

  • 16. [Digital simulation of the biological flow-reaction absorption systems].
    Yokoyama R; Hoshi T; Sato J
    Iyodenshi To Seitai Kogaku; 1977 Feb; 15(1):23-30. PubMed ID: 559821
    [No Abstract]   [Full Text] [Related]  

  • 17. An equation for flow in the renal proximal tubule.
    Weinstein AM
    Bull Math Biol; 1986; 48(1):29-57. PubMed ID: 3697554
    [No Abstract]   [Full Text] [Related]  

  • 18. A mathematical model of proximal tubule absorption.
    Huss RE; Stephenson JL
    J Membr Biol; 1979 Jun; 47(4):377-99. PubMed ID: 469934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel method for kinetic analysis applied to transport by the uniporter OCT2.
    Wright SH; Secomb TW
    Am J Physiol Renal Physiol; 2022 Sep; 323(3):F370-F387. PubMed ID: 35862650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recreating the size-dependent reabsorption function of proximal convoluted tubule towards artificial kidney applications: Structural analysis and computational study.
    Sateesh J; Guha K; Dutta A; Sengupta P; Agarwal A; Srinivasa Rao K
    Artif Organs; 2020 Aug; 44(8):E369-E381. PubMed ID: 32219877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.