These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2271406)

  • 1. Compound action potential amplitude and conduction velocity as a function of temperature in carp nervus lateralis.
    Ide H; Hosaka R
    Front Med Biol Eng; 1990; 2(1):43-52. PubMed ID: 2271406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral nerve at extreme low temperatures 1: effects of temperature on the action potential.
    Stecker MM; Baylor K
    Cryobiology; 2009 Aug; 59(1):1-11. PubMed ID: 19558975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro effects of ultrasound with different energies on the conduction properties of neural tissue.
    Tsui PH; Wang SH; Huang CC
    Ultrasonics; 2005 Jun; 43(7):560-5. PubMed ID: 15950031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The association between nerve conduction velocity and the compound action potential amplitude during ischemic blocking.
    Hansson S
    Electromyogr Clin Neurophysiol; 1999 Mar; 39(2):113-22. PubMed ID: 10207681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nerve compound action potentials analysed with the simultaneously measured single fibre action potentials in humans.
    Schalow G; Zäch GA
    Electromyogr Clin Neurophysiol; 1994 Dec; 34(8):451-65. PubMed ID: 7882888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of the electrical and mechanical responses of the adductor pollicis muscle in humans.
    Hopf HC; Maurer K
    Muscle Nerve; 1990 Mar; 13(3):259-62. PubMed ID: 2320047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of interelectrode distance on bipolar recording of sensory nerve action potential. A mathematical study.
    Olivan Palacios J; Abad Alegria F; Sierra Posso S
    Electromyogr Clin Neurophysiol; 1993 Mar; 33(2):73-8. PubMed ID: 8449171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of TTX-sensitive and TTX-resistant sodium channels in Adelta- and C-fiber conduction and synaptic transmission.
    Pinto V; Derkach VA; Safronov BV
    J Neurophysiol; 2008 Feb; 99(2):617-28. PubMed ID: 18057109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conduction in bundles of demyelinated nerve fibers: computer simulation.
    Reutskiy S; Rossoni E; Tirozzi B
    Biol Cybern; 2003 Dec; 89(6):439-48. PubMed ID: 14673655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity recovery function of the compound muscle action potential assessed with doublet and triplet stimulation.
    Kamavuako EN; Hennings K; Farina D
    Muscle Nerve; 2007 Aug; 36(2):190-6. PubMed ID: 17486580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of reference electrode to the compound muscle action potential.
    Nandedkar SD; Barkhaus PE
    Muscle Nerve; 2007 Jul; 36(1):87-92. PubMed ID: 17455266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of nerve conduction velocity distribution from sampled compound action potential signals.
    Gu D; Gander RE; Crichlow EC
    IEEE Trans Biomed Eng; 1996 Aug; 43(8):829-38. PubMed ID: 9216155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode.
    Yoshida K; Kurstjens GA; Hennings K
    Med Eng Phys; 2009 Dec; 31(10):1261-70. PubMed ID: 19762269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of muscle-fiber velocity recovery function on motor unit action potential properties in voluntary contractions.
    Farina D; Falla D
    Muscle Nerve; 2008 May; 37(5):650-8. PubMed ID: 18085714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conduction velocity distribution: early diagnostic tool for peripheral neuropathies.
    Kiziltan E; Dalkilic N; Guney FB; Pehlivan F
    Int J Neurosci; 2007 Feb; 117(2):203-13. PubMed ID: 17365108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperosmolar solutions selectively block action potentials in rat myelinated sensory fibers: implications for diabetic neuropathy.
    Matsuka Y; Spigelman I
    J Neurophysiol; 2004 Jan; 91(1):48-56. PubMed ID: 13679399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Uhthoff's phenomenon in MS patients with internuclear ophthalmoparesis.
    Davis SL; Frohman TC; Crandall CG; Brown MJ; Mills DA; Kramer PD; Stüve O; Frohman EM
    Neurology; 2008 Mar; 70(13 Pt 2):1098-106. PubMed ID: 18287569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conduction velocity distributions compared to fiber size distributions in normal human sural nerve.
    van Veen BK; Schellens RL; Stegeman DF; Schoonhoven R; Gabreëls-Festen AA
    Muscle Nerve; 1995 Oct; 18(10):1121-7. PubMed ID: 7659106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The recruitment order of electrically activated motor neurons investigated with a novel collision technique.
    Hennings K; Kamavuako EN; Farina D
    Clin Neurophysiol; 2007 Feb; 118(2):283-91. PubMed ID: 17174598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory nerve conduction velocity of the caudal cutaneous sural and medial cutaneous antebrachial nerves of adult horses.
    Whalen LR; Wheeler DW; LeCouteur RA; Yovich JV; Boggie LC; Grandy JL; Kainer RA
    Am J Vet Res; 1994 Jul; 55(7):892-7. PubMed ID: 7978624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.