These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22714211)

  • 1. Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes.
    Ye Z; Chaudhary S; Kuang P; Ho KM
    Opt Express; 2012 May; 20(11):12213-21. PubMed ID: 22714211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triangular metallic gratings for large absorption enhancement in thin film Si solar cells.
    Battal E; Yogurt TA; Aygun LE; Okyay AK
    Opt Express; 2012 Apr; 20(9):9458-64. PubMed ID: 22535035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-nanowall grating transparent electrodes: achieving high optical transmittance at high incident angles with minimal diffraction.
    Kuang P; Park JM; Liu G; Ye Z; Leung W; Chaudhary S; Lynch D; Ho KM; Constant K
    Opt Express; 2013 Jan; 21(2):2393-401. PubMed ID: 23389219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes.
    Mahpeykar SM; Xiong Q; Wang X
    Opt Express; 2014 Oct; 22 Suppl 6():A1576-88. PubMed ID: 25607315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imprinting localized plasmons for enhanced solar cells.
    Dunbar RB; Pfadler T; Lal NN; Baumberg JJ; Schmidt-Mende L
    Nanotechnology; 2012 Sep; 23(38):385202. PubMed ID: 22948008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.
    Le KQ; Abass A; Maes B; Bienstman P; Alù A
    Opt Express; 2012 Jan; 20(1):A39-50. PubMed ID: 22379677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visibly transparent polymer solar cells produced by solution processing.
    Chen CC; Dou L; Zhu R; Chung CH; Song TB; Zheng YB; Hawks S; Li G; Weiss PS; Yang Y
    ACS Nano; 2012 Aug; 6(8):7185-90. PubMed ID: 22789123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous optical absorption in metallic gratings with subwavelength slits.
    Chern RL; Chen YT; Lin HY
    Opt Express; 2010 Sep; 18(19):19510-21. PubMed ID: 20940847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings.
    Munday JN; Atwater HA
    Nano Lett; 2011 Jun; 11(6):2195-201. PubMed ID: 20945845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-modified scattering properties of silicon nanostructures for solar energy applications.
    Fofang NT; Luk TS; Okandan M; Nielson GN; Brener I
    Opt Express; 2013 Feb; 21(4):4774-82. PubMed ID: 23482011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light trapping cavity enhanced light transmission through a single sub-wavelength aperture in a metal film.
    Olkkonen J
    Opt Express; 2009 Dec; 17(26):23992-4001. PubMed ID: 20052110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells.
    Salvador M; MacLeod BA; Hess A; Kulkarni AP; Munechika K; Chen JI; Ginger DS
    ACS Nano; 2012 Nov; 6(11):10024-32. PubMed ID: 23062171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.
    Lin C; Povinelli ML
    Opt Express; 2009 Oct; 17(22):19371-81. PubMed ID: 19997158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.
    Boccard M; Battaglia C; Hänni S; Söderström K; Escarré J; Nicolay S; Meillaud F; Despeisse M; Ballif C
    Nano Lett; 2012 Mar; 12(3):1344-8. PubMed ID: 22332666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode.
    Zhang X; Huang Q; Hu J; Knize RJ; Lu Y
    Opt Express; 2014 Oct; 22 Suppl 6():A1400-11. PubMed ID: 25607297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximal light-energy transfer through a dielectric/metal-layered electrode on a photoactive device.
    Kim KH; Park QH
    Opt Express; 2014 Jan; 22(2):1963-70. PubMed ID: 24515205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells.
    Li SS; Tu KH; Lin CC; Chen CW; Chhowalla M
    ACS Nano; 2010 Jun; 4(6):3169-74. PubMed ID: 20481512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.