These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22714213)

  • 41. Spectral determination of a two-parametric phase function for polydispersive scattering liquids.
    Lindbergh T; Fredriksson I; Larsson M; Strömberg T
    Opt Express; 2009 Feb; 17(3):1610-21. PubMed ID: 19188990
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy.
    Pucci O; Toronov V; St Lawrence K
    Appl Opt; 2010 Nov; 49(32):6324-32. PubMed ID: 21068864
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle.
    Hoy CL; Gamm UA; Sterenborg HJ; Robinson DJ; Amelink A
    J Biomed Opt; 2013 Oct; 18(10):107005. PubMed ID: 24126725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monte Carlo modeling of spatial coherence: free-space diffraction.
    Fischer DG; Prahl SA; Duncan DD
    J Opt Soc Am A Opt Image Sci Vis; 2008 Oct; 25(10):2571-81. PubMed ID: 18830335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study.
    Sung KB; Chen HH
    J Biomed Opt; 2012 Oct; 17(10):107003. PubMed ID: 23047254
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Localization of an absorber in a turbid semi-infinite medium by spatially resolved continuous-wave diffuse reflectance measurements.
    Aksel EB; Turkoglu AN; Ercan AE; Akin A
    J Biomed Opt; 2011 Aug; 16(8):086010. PubMed ID: 21895322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Robust metamodel-based inverse estimation of bulk optical properties of turbid media from spatially resolved diffuse reflectance measurements.
    Watté R; Aernouts B; Van Beers R; Saeys W
    Opt Express; 2015 Oct; 23(21):27880-98. PubMed ID: 26480447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An experimental and numerical modelling investigation of the optical properties of Intralipid using deep Raman spectroscopy.
    Moran LJ; Wordingham F; Gardner B; Stone N; Harries TJ
    Analyst; 2021 Dec; 146(24):7601-7610. PubMed ID: 34783335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimized goniometer for determination of the scattering phase function of suspended particles: simulations and measurements.
    Foschum F; Kienle A
    J Biomed Opt; 2013 Aug; 18(8):85002. PubMed ID: 23974346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime.
    Naglic P; Pernuš F; Likar B; Bürmen M
    J Biomed Opt; 2016 Sep; 21(9):95003. PubMed ID: 27653934
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map.
    Banerjee B; Bagchi S; Vasu RM; Roy D
    J Opt Soc Am A Opt Image Sci Vis; 2008 Sep; 25(9):2347-56. PubMed ID: 18758563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Near-infrared center-of-intensity time gated imaging for detection of a target in a highly scattering turbid medium.
    Wang Y; Gayen SK; Alrubaiee M; Alfano RR
    Technol Cancer Res Treat; 2012 Aug; 11(4):309-15. PubMed ID: 22712606
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range.
    Meinke M; Müller G; Helfmann J; Friebel M
    J Biomed Opt; 2007; 12(1):014024. PubMed ID: 17343499
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy.
    Hennessy R; Lim SL; Markey MK; Tunnell JW
    J Biomed Opt; 2013 Mar; 18(3):037003. PubMed ID: 23455965
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical patterning of features with spacing below the far-field diffraction limit using absorbance modulation.
    Masid F; Andrew TL; Menon R
    Opt Express; 2013 Feb; 21(4):5209-14. PubMed ID: 23482054
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Raman signal enhancement via elastic light scattering.
    Hokr BH; Yakovlev VV
    Opt Express; 2013 May; 21(10):11757-62. PubMed ID: 23736397
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acoustic dynamics of supercooled indomethacin probed by Brillouin light scattering.
    De Panfilis S; Pogna EA; Virga A; Scopigno T
    Phys Chem Chem Phys; 2014 Jul; 16(27):14206-11. PubMed ID: 24911110
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes.
    Lo JY; Yu B; Fu HL; Bender JE; Palmer GM; Kuech TF; Ramanujam N
    Opt Express; 2009 Feb; 17(3):1372-84. PubMed ID: 19188966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monte Carlo modeling of light propagation in highly scattering tissues--II: Comparison with measurements in phantoms.
    Flock ST; Wilson BC; Patterson MS
    IEEE Trans Biomed Eng; 1989 Dec; 36(12):1169-73. PubMed ID: 2606491
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accuracy of retrieving optical properties from liquid tissue phantoms using a single integrating sphere.
    Vincely VD; Vishwanath K
    Appl Opt; 2022 Jan; 61(2):375-385. PubMed ID: 35200872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.