These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 22714239)

  • 41. Optical forces in twisted split-ring-resonator dimer stereometamaterials.
    Tang C; Wang Q; Liu F; Chen Z; Wang Z
    Opt Express; 2013 May; 21(10):11783-93. PubMed ID: 23736400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs).
    Lahiri B; McMeekin SG; De la Rue RM; Johnson NP
    Opt Express; 2013 Apr; 21(8):9343-52. PubMed ID: 23609645
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides.
    Chen J; Li Z; Yue S; Gong Q
    Opt Express; 2009 Dec; 17(26):23603-9. PubMed ID: 20052069
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance.
    Zheng HY; Jin XR; Park JW; Lu YH; Rhee JY; Jang WH; Cheong H; Lee YP
    Opt Express; 2012 Oct; 20(21):24002-9. PubMed ID: 23188367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation, fabrication and characterization of THz metamaterial absorbers.
    Grant JP; McCrindle IJ; Cumming DR
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299442
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Perfect Absorption Efficiency Circular Nanodisk Array Integrated with a Reactive Impedance Surface with High Field Enhancement.
    Anam MK; Choi S
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32024263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.
    Liu R; Cheng Q; Chin JY; Mock JJ; Cui TJ; Smith DR
    Opt Express; 2009 Nov; 17(23):21030-41. PubMed ID: 19997341
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Ultrathin Tunable Metamaterial Absorber for Lower Microwave Band Based on Magnetic Nanomaterial.
    Ning J; Chen K; Zhao W; Zhao J; Jiang T; Feng Y
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultra-thin and broadband tunable metamaterial graphene absorber.
    Xiong H; Wu YB; Dong J; Tang MC; Jiang YN; Zeng XP
    Opt Express; 2018 Jan; 26(2):1681-1688. PubMed ID: 29402039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reusable localized surface plasmon sensors based on ultrastable nanostructures.
    Vogel N; Jung M; Bocchio NL; Retsch M; Kreiter M; Köper I
    Small; 2010 Jan; 6(1):104-9. PubMed ID: 19899088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors.
    Ekgasit S; Thammacharoen C; Yu F; Knoll W
    Appl Spectrosc; 2005 May; 59(5):661-7. PubMed ID: 15969812
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultra-broadband metamaterial absorbers from long to very long infrared regime.
    Zhou Y; Qin Z; Liang Z; Meng D; Xu H; Smith DR; Liu Y
    Light Sci Appl; 2021 Jul; 10(1):138. PubMed ID: 34226489
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.
    Jiang ZH; Yun S; Toor F; Werner DH; Mayer TS
    ACS Nano; 2011 Jun; 5(6):4641-7. PubMed ID: 21456579
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-loss plasmonic metamaterial based on epitaxial gold monocrystal film.
    Fedotov VA; Uchino T; Ou JY
    Opt Express; 2012 Apr; 20(9):9545-50. PubMed ID: 22535045
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array.
    Xu HX; Wang GM; Qi MQ; Zeng HY
    Opt Express; 2012 Sep; 20(20):21968-76. PubMed ID: 23037347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction.
    Shen Y; Zhang J; Pang Y; Zheng L; Wang J; Ma H; Qu S
    Sci Rep; 2018 Mar; 8(1):4423. PubMed ID: 29535316
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Absorbing polarization selective resonant gratings.
    Lehmuskero A; Vartiainen I; Saastamoinen T; Alasaarela T; Kuittinen M
    Opt Express; 2010 Dec; 18(26):27270-9. PubMed ID: 21197005
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs).
    Lahiri B; Dylewicz R; De La Rue RM; Johnson NP
    Opt Express; 2010 May; 18(11):11202-8. PubMed ID: 20588979
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal.
    Suzuki T; Yamamoto N
    Opt Express; 2009 Dec; 17(26):23664-71. PubMed ID: 20052076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.