BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22714302)

  • 1. Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images.
    Fereidouni F; Bader AN; Gerritsen HC
    Opt Express; 2012 Jun; 20(12):12729-41. PubMed ID: 22714302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional polar representation for multispectral fluorescence lifetime imaging microscopy.
    Leray A; Spriet C; Trinel D; Héliot L
    Cytometry A; 2009 Dec; 75(12):1007-14. PubMed ID: 19908245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin.
    Fereidouni F; Bader AN; Colonna A; Gerritsen HC
    J Biophotonics; 2014 Aug; 7(8):589-96. PubMed ID: 23576407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust blind spectral unmixing for fluorescence microscopy using unsupervised learning.
    McRae TD; Oleksyn D; Miller J; Gao YR
    PLoS One; 2019; 14(12):e0225410. PubMed ID: 31790435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified phasor approach for analyzing time-gated fluorescence lifetime images.
    Fereidouni F; Esposito A; Blab GA; Gerritsen HC
    J Microsc; 2011 Dec; 244(3):248-58. PubMed ID: 21933184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative linear unmixing of CFP and YFP from spectral images acquired with two-photon excitation.
    Thaler C; Vogel SS
    Cytometry A; 2006 Aug; 69(8):904-11. PubMed ID: 16888770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative comparison between full-spectrum and filter-based imaging in hyperspectral fluorescence microscopy.
    Gao L; Hagen N; Tkaczyk TS
    J Microsc; 2012 May; 246(2):113-23. PubMed ID: 22356127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear Combination Properties of the Phasor Space in Fluorescence Imaging.
    Torrado B; Malacrida L; Ranjit S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High speed multispectral fluorescence lifetime imaging.
    Fereidouni F; Reitsma K; Gerritsen HC
    Opt Express; 2013 May; 21(10):11769-82. PubMed ID: 23736399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral mapping tools from the earth sciences applied to spectral microscopy data.
    Harris AT
    Cytometry A; 2006 Aug; 69(8):872-9. PubMed ID: 16969808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phasor-based multi-harmonic unmixing for
    Vallmitjana A; Lepanto P; Irigoin F; Malacrida L
    Methods Appl Fluoresc; 2022 Nov; 11(1):. PubMed ID: 36252561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free identification and differentiation of different microplastics using phasor analysis of fluorescence lifetime imaging microscopy (FLIM)-generated data.
    Monteleone A; Schary W; Wenzel F; Langhals H; Dietrich DR
    Chem Biol Interact; 2021 Jun; 342():109466. PubMed ID: 33865829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative image correction and calibration for confocal fluorescence microscopy using thin reference layers and SIPchart-based calibration procedures.
    Zwier JM; Oomen L; Brocks L; Jalink K; Brakenhoff GJ
    J Microsc; 2008 Jul; 231(Pt 1):59-69. PubMed ID: 18638190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed.
    Larson JM
    Cytometry A; 2006 Aug; 69(8):825-34. PubMed ID: 16969806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full spectrum filterless fluorescence microscopy.
    Booth MJ; Jesacher A; Juskaitis R; Wilson T
    J Microsc; 2010 Jan; 237(1):103-9. PubMed ID: 20055924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis.
    Ecker RC; de Martin R; Steiner GE; Schmid JA
    Cytometry A; 2004 Jun; 59(2):172-81. PubMed ID: 15170596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autofluorescence prediction model for fluorescence unmixing and age determination.
    Eigenfeld M; Kerpes R; Whitehead I; Becker T
    Biotechnol J; 2022 Dec; 17(12):e2200091. PubMed ID: 36328781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy.
    Gao L; Kester RT; Hagen N; Tkaczyk TS
    Opt Express; 2010 Jul; 18(14):14330-44. PubMed ID: 20639917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation.
    Leray A; Spriet C; Trinel D; Usson Y; Héliot L
    J Microsc; 2012 Oct; 248(1):66-76. PubMed ID: 22971219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.