These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22714321)

  • 41. Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica.
    Luo Z; Duan J; Guo C
    Opt Lett; 2017 Jun; 42(12):2358-2361. PubMed ID: 28614309
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tunable two-dimensional non-close-packed microwell arrays using colloidal crystals as templates.
    Ren Z; Li X; Zhang J; Li W; Zhang X; Yang B
    Langmuir; 2007 Jul; 23(15):8272-6. PubMed ID: 17579464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Micro-nano hierarchical pillar array structures prepared on curved surfaces by nanoimprinting using flexible molds from anodic porous alumina and their application to superhydrophobic surfaces.
    Yanagishita T; Sou T; Masuda H
    RSC Adv; 2022 Jul; 12(31):20340-20347. PubMed ID: 35919591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new method for fabricating high density and large aperture ratio liquid microlens array.
    Ren H; Ren D; Wu ST
    Opt Express; 2009 Dec; 17(26):24183-8. PubMed ID: 20052129
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabricating small-scale, curved, polymeric structures with convex and concave menisci through interfacial free energy equilibrium.
    Cheng CM; Matsuura K; Wang IJ; Kuroda Y; LeDuc PR; Naruse K
    Lab Chip; 2009 Nov; 9(22):3306-9. PubMed ID: 19865741
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Manufacturing of a microlens array mold by a two-step method combining microindentation and precision polishing.
    Zhang L; Yi AY
    Appl Opt; 2020 Aug; 59(23):6945-6952. PubMed ID: 32788785
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera.
    Li L; Yi AY
    Appl Opt; 2012 Apr; 51(12):1843-52. PubMed ID: 22534888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid Fabrication of Large-Area Concave Microlens Array on ZnSe.
    Zhang F; Yang Q; Bian H; Hou X; Chen F
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33921624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Supercritical Fluid-Driven Polymer Phase Separation for Microlens with Tunable Dimension and Curvature.
    Yang Y; Huang X; Zhang X; Jiang F; Zhang X; Wang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8849-58. PubMed ID: 26999714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Femtosecond laser-induced microstructures in glasses and applications in micro-optics.
    Qiu J
    Chem Rec; 2004; 4(1):50-8. PubMed ID: 15057868
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization.
    Zhang F; Yang Q; Bian H; Wang S; Li M; Hou X; Chen F
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683544
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices.
    Meena Narayana Menon D; Pugliese D; Giardino M; Janner D
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297033
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Laser smoothing of binary gratings and multilevel etched structures in fused silica.
    Wlodarczyk KL; Mendez E; Baker HJ; McBride R; Hall DR
    Appl Opt; 2010 Apr; 49(11):1997-2005. PubMed ID: 20389997
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability.
    Xu Q; Dai B; Huang Y; Wang H; Yang Z; Wang K; Zhuang S; Zhang D
    Opt Express; 2018 Feb; 26(4):4172-4182. PubMed ID: 29475269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of high fill factor cylindrical microlens array with isolated thermal reflow.
    Qiu J; Li M; Ye H; Yang C; Shi C
    Appl Opt; 2018 Sep; 57(25):7296-7302. PubMed ID: 30182991
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of microlens arrays in polycarbonate with nanojoule energy femtosecond laser pulses.
    Meunier T; Villafranca AB; Bhardwaj R; Weck A
    Opt Lett; 2012 Oct; 37(20):4266-8. PubMed ID: 23073432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CO
    Yang S; Peng K; Cao X; Wang W; Chen Y; Li Y; Zhao J; Li B
    Appl Opt; 2020 Feb; 59(4):1099-1104. PubMed ID: 32225248
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Silicon microlens structures fabricated by scanning-probe gray-scale oxidation.
    Chen CF; Tzeng SD; Chen HY; Gwo S
    Opt Lett; 2005 Mar; 30(6):652-4. PubMed ID: 15792006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Curved microwell arrays created by diffusion-limited chemical etching of artificially engineered solids.
    Ma Z; Hong Y; Ma L; Ni Y; Zou S; Su M
    Langmuir; 2009 Jan; 25(2):643-7. PubMed ID: 19105728
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.