These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22714321)

  • 61. Reduction photolithography using microlens arrays: applications in gray scale photolithography.
    Wu H; Odom TW; Whitesides GM
    Anal Chem; 2002 Jul; 74(14):3267-73. PubMed ID: 12139028
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Vesicle array-templated large-area silica surface patterns.
    Shi Q; Wang J; Wyrsta MD; Stucky GD
    J Am Chem Soc; 2005 Jul; 127(29):10154-5. PubMed ID: 16028911
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Azo polymer microspherical cap array: soft-lithographic fabrication and photoinduced shape deformation behavior.
    Liu B; He Y; Fan P; Wang X
    Langmuir; 2007 Oct; 23(22):11266-72. PubMed ID: 17880252
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Perfectly hydrophobic surfaces with patterned nanoneedles of controllable features.
    Park SG; Lee SY; Jang SG; Yang SM
    Langmuir; 2010 Apr; 26(8):5295-9. PubMed ID: 20297829
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Site-specific stamping of graphene micro-patterns over large areas using flexible stamps.
    Chen CH; Reddy KM; Padture NP
    Nanotechnology; 2012 Jun; 23(23):235603. PubMed ID: 22595887
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Laser direct-write technique for fabricating microlens arrays on soda-lime glass with a Nd:YVO4 laser.
    Nieto D; Flores-Arias MT; O'Connor GM; Gomez-Reino C
    Appl Opt; 2010 Sep; 49(26):4979-83. PubMed ID: 20830187
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fabrication of concave microlens arrays by local fictive temperature modification of fused silica.
    Zhang C; Liao W; Yang K; Liu T; Bai Y; Zhang L; Jiang X; Chen J; Jiang Y; Wang H; Luan X; Zhou H; Yuan X; Zheng W
    Opt Lett; 2017 Mar; 42(6):1093-1096. PubMed ID: 28295101
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The fabrication of aspherical microlenses using focused ion-beam techniques.
    Langridge MT; Cox DC; Webb RP; Stolojan V
    Micron; 2014 Feb; 57():56-66. PubMed ID: 24239415
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique.
    He M; Yuan X; Bu J; Cheong WC
    Opt Lett; 2004 May; 29(9):1007-9. PubMed ID: 15143656
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication of a Microlens Array with Controlled Curvature by Thermally Curving Photosensitive Gel Film beneath Microholes.
    Zhang D; Xu Q; Fang C; Wang K; Wang X; Zhuang S; Dai B
    ACS Appl Mater Interfaces; 2017 May; 9(19):16604-16609. PubMed ID: 28452461
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fabrication of disposable topographic silicon oxide from sawtoothed patterns: control of arrays of gold nanoparticles.
    Cho H; Yoo H; Park S
    Langmuir; 2010 May; 26(10):7451-7. PubMed ID: 20000759
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Focal varying microlens array.
    Tian ZN; Yao WG; Xu JJ; Yu YH; Chen QD; Sun HB
    Opt Lett; 2015 Sep; 40(18):4222-5. PubMed ID: 26371901
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Graded-size microlens array by the pyro-electrohydrodynamic continuous printing method.
    Grimaldi IA; Coppola S; Loffredo F; Villani F; Nenna G; Minarini C; Vespini V; Miccio L; Grilli S; Ferraro P
    Appl Opt; 2013 Nov; 52(32):7699-705. PubMed ID: 24216727
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Using Micromachined Molds, Partial-curing PDMS Bonding Technique, and Multiple Casting to Create Hybrid Microfluidic Chip for Microlens Array.
    Chen PC; Zhang RH; Chen LT
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31470639
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fabrication of 3-D curved microstructures by constrained gas expansion and photopolymerization.
    Chan-Park MB; Yang C; Guo X; Chen L; Yoon SF; Chun JH
    Langmuir; 2008 May; 24(10):5492-9. PubMed ID: 18442275
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Brightness field distributions of microlens arrays using micro molding.
    Cheng HC; Huang CF; Lin Y; Shen YK
    Opt Express; 2010 Dec; 18(26):26887-904. PubMed ID: 21196966
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bioresponsive hydrogel microlenses.
    Kim J; Nayak S; Lyon LA
    J Am Chem Soc; 2005 Jul; 127(26):9588-92. PubMed ID: 15984886
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique.
    Zhan Z; Lei Y
    ACS Nano; 2014 Apr; 8(4):3862-8. PubMed ID: 24611800
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of a 3D artificial compound eye.
    Li L; Yi AY
    Opt Express; 2010 Aug; 18(17):18125-37. PubMed ID: 20721201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.