These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22714331)

  • 1. Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity.
    Devarapu GC; Foteinopoulou S
    Opt Express; 2012 Jun; 20(12):13040-54. PubMed ID: 22714331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Channel High-Performance Absorber Based on SiC-Photonic Crystal Heterostructure-SiC Structure.
    Han J; Jiang J; Wu T; Gao Y; Gao Y
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton polaritons in one-dimensional metal-semiconductor photonic crystals.
    Márquez-Islas R; Flores-Desirena B; Pérez-Rodríguez F
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6584-8. PubMed ID: 19205244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals.
    Sang HY; Li ZY; Gu BY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066611. PubMed ID: 15697530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal.
    Gong Y; Liu X; Wang L; Lu H; Wang G
    Opt Express; 2011 May; 19(10):9759-69. PubMed ID: 21643233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate.
    Wang W; Cui Y; He Y; Hao Y; Lin Y; Tian X; Ji T; He S
    Opt Lett; 2014 Jan; 39(2):331-4. PubMed ID: 24562139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene.
    Wang X; Liang Y; Wu L; Guo J; Dai X; Xiang Y
    Opt Lett; 2018 Sep; 43(17):4256-4259. PubMed ID: 30160765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Half metallic ferromagnets.
    Dowben P
    J Phys Condens Matter; 2007 Aug; 19(31):310301. PubMed ID: 21694101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells.
    Deparis O; El Daif O
    Opt Lett; 2012 Oct; 37(20):4230-2. PubMed ID: 23073420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design.
    Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z
    ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realization of near-perfect absorption in the whole reststrahlen band of SiC.
    Chen D; Dong J; Yang J; Hua Y; Li G; Guo C; Xie C; Liu M; Liu Q
    Nanoscale; 2018 May; 10(20):9450-9454. PubMed ID: 29749414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Polarization-sensitive characteristics of the transmission spectra in photonic crystal with nematic liquid crystal defects].
    Dai Q; Wu RN; Yan B; Zhang RL; Wang PC; Quan W; Xu SN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 May; 32(5):1345-9. PubMed ID: 22827086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wafer-scale metamaterials for polarization-insensitive and dual-band perfect absorption.
    Liu J; Zhu M; Zhang N; Zhang H; Zhou Y; Sun S; Yi N; Gao S; Song Q; Xiao S
    Nanoscale; 2015 Dec; 7(45):18914-7. PubMed ID: 26525777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active control of slow light on a chip with photonic crystal waveguides.
    Vlasov YA; O'Boyle M; Hamann HF; McNab SJ
    Nature; 2005 Nov; 438(7064):65-9. PubMed ID: 16267549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient light amplification in low gain materials due to a photonic band edge effect.
    Ondič L; Pelant I
    Opt Express; 2012 Mar; 20(7):7071-80. PubMed ID: 22453388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide.
    Lai WC; Chakravarty S; Wang X; Lin C; Chen RT
    Opt Lett; 2011 Mar; 36(6):984-6. PubMed ID: 21403750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A polarization-dependent perfect absorber with high
    Song D; Wu B; Liu Y; Wu X; Yu K
    Phys Chem Chem Phys; 2023 Sep; 25(37):25803-25809. PubMed ID: 37724450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near- and far-field verification of electro-optic effect enhancement on a tunable lithium niobate photonic crystal.
    Bernal MP; Roussey M; Baida FI
    J Microsc; 2008 Feb; 229(Pt 2):264-9. PubMed ID: 18304083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear control of switchable wavelength-selective absorption in a one-dimensional photonic crystal including ultrathin phase transition material-vanadium dioxide.
    Saleki Z
    Sci Rep; 2022 Jun; 12(1):10715. PubMed ID: 35739149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.