These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 2271448)
41. Neural mechanisms of chromatic adaptation in L-type cone horizontal cells of the carp retina. Umino O; Watanabe K; Hashimoto Y Jpn J Physiol; 1989; 39(5):725-42. PubMed ID: 2615034 [TBL] [Abstract][Full Text] [Related]
42. Rod-dependent intracellular responses to light recorded from the pigment epithelium of the cat retina. Schmidt R; Steinberg RH J Physiol; 1971 Aug; 217(1):71-91. PubMed ID: 5571953 [TBL] [Abstract][Full Text] [Related]
43. Efflux of potassium from the isolated frog retina: a study of the photic effect. Cavaggioni A; Sorbi RT; Turini S J Physiol; 1972 Apr; 222(2):427-45. PubMed ID: 4537516 [TBL] [Abstract][Full Text] [Related]
44. The effects of acetazolamide on the electroretinographic responses in rats. Findl O; Hansen RM; Fulton AB Invest Ophthalmol Vis Sci; 1995 May; 36(6):1019-26. PubMed ID: 7730011 [TBL] [Abstract][Full Text] [Related]
46. [Adaptational changes in cone electroretinograms in man]. Iijima H; Yamaguchi S Nippon Ganka Gakkai Zasshi; 1990 Nov; 94(11):987-92. PubMed ID: 2075875 [TBL] [Abstract][Full Text] [Related]
47. GABA and glycine modify the balance of rod and cone inputs to horizontal cells in the Xenopus retina. Witkovsky P; Stone S Exp Biol; 1987; 47(1):13-22. PubMed ID: 3666095 [TBL] [Abstract][Full Text] [Related]
48. Physiological and pharmacological analysis of suppressive rod-cone interaction in Necturus retina [corrected]. Eysteinsson T; Frumkes TE J Neurophysiol; 1989 Apr; 61(4):866-77. PubMed ID: 2723725 [TBL] [Abstract][Full Text] [Related]
49. Light absorbed by 575-cones trigger rod disc shedding in the frog retina. Gordon WC; Dahl NA Vis Neurosci; 1990 Jan; 4(1):95-8. PubMed ID: 2265147 [TBL] [Abstract][Full Text] [Related]
50. The eel retina. Receptor classes and spectral mechanisms. Gordon J; Shapley RM; Kaplan E J Gen Physiol; 1978 Feb; 71(2):123-38. PubMed ID: 641517 [TBL] [Abstract][Full Text] [Related]
51. Cancellation of rod signals by cones, and cone signals by rods in the cat retina. Rodieck RW; Rushton WA J Physiol; 1976 Jan; 254(3):775-85. PubMed ID: 1255506 [TBL] [Abstract][Full Text] [Related]
52. Spectral sensitivities of short- and long-wavelength sensitive cone mechanisms in the frog retina. Koskelainen A; Hemilä S; Donner K Acta Physiol Scand; 1994 Sep; 152(1):115-24. PubMed ID: 7810330 [TBL] [Abstract][Full Text] [Related]
53. Rod and cone contributions to the delayed response of the on-off ganglion cell in the frog. Chino YM; Sturr JF Vision Res; 1975 Feb; 15(2):193-202. PubMed ID: 1079382 [No Abstract] [Full Text] [Related]
54. Modulation of synaptic transmission in the retina. Yang XL Doc Ophthalmol; 1991; 76(4):377-87. PubMed ID: 1657562 [TBL] [Abstract][Full Text] [Related]
55. Studies on the off-response of the rod photoreceptors in the isolated frog retina. Ando H; Katsuda S; Hanawa I Exp Eye Res; 1984 Feb; 38(2):125-35. PubMed ID: 6609079 [TBL] [Abstract][Full Text] [Related]
56. Digoxin-induced reversible dysfunction of the cone photoreceptors in monkeys. Kinoshita J; Iwata N; Kimotsuki T; Yasuda M Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):881-92. PubMed ID: 24436189 [TBL] [Abstract][Full Text] [Related]
57. Some observations on the c-wave of the electroretinogram in the intact frog eye. Lurie M Exp Eye Res; 1976 Aug; 23(2):197-207. PubMed ID: 1086255 [No Abstract] [Full Text] [Related]