These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22714669)

  • 1. Determination of electrode to nerve fiber distance and nerve conduction velocity through spectral analysis of the extracellular action potentials recorded from earthworm giant fibers.
    Qiao S; Odoemene O; Yoshida K
    Med Biol Eng Comput; 2012 Aug; 50(8):867-75. PubMed ID: 22714669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the Electrode-Fiber Bioelectrical Coupling From Extracellularly Recorded Single Fiber Action Potentials.
    Qiao S; Stieglitz T; Yoshida K
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):951-960. PubMed ID: 26469339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of unit distance and conduction velocity on the spectra of extracellular action potentials recorded with intrafascicular electrodes.
    Qiao S; Yoshida K
    Med Eng Phys; 2013 Jan; 35(1):116-24. PubMed ID: 22578931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode.
    Yoshida K; Kurstjens GA; Hennings K
    Med Eng Phys; 2009 Dec; 31(10):1261-70. PubMed ID: 19762269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for characterization of peripheral nerve fiber size distributions by group delay measurements and simulated annealing optimization.
    Szlavik RB; Turner GE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5008-14. PubMed ID: 19163842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between nerve and muscle fiber conduction velocities of the same motor unit in man.
    Okajima Y; Toikawa H; Hanayama K; Ohtsuka T; Kimura A; Chino N
    Neurosci Lett; 1998 Aug; 253(1):65-7. PubMed ID: 9754806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The single nerve fiber action potential and the filter bank--a modeling approach.
    Struijk LN; Akay M; Struijk JJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):372-5. PubMed ID: 18232387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Easy method to examine single nerve fiber excitability and conduction parameters using intact nonanesthetized earthworms.
    Bähring R; Bauer CK
    Adv Physiol Educ; 2014 Sep; 38(3):253-64. PubMed ID: 25179616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for characterization of peripheral nerve fiber size distributions by group delay.
    Szlavik RB
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2836-40. PubMed ID: 19126466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of a frequency-selective electrode based on spatial spectral properties of the extracellular AP of myelinated nerve fibers.
    Rossel O; Soulier F; Bernard S; Cathébras G
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5843-6. PubMed ID: 22255668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conduction in bundles of demyelinated nerve fibers: computer simulation.
    Reutskiy S; Rossoni E; Tirozzi B
    Biol Cybern; 2003 Dec; 89(6):439-48. PubMed ID: 14673655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for compound action potentials and currents in a nerve bundle. III: A comparison of the conduction velocity distributions calculated from compound action currents and potentials.
    Wijesinghe RS; Gielen FL; Wikswo JP
    Ann Biomed Eng; 1991; 19(1):97-121. PubMed ID: 2035912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nerve fiber conduction-velocity distributions. II. Estimation based on two compound action potentials.
    Cummins KL; Dorfman LJ; Perkel DH
    Electroencephalogr Clin Neurophysiol; 1979 Jun; 46(6):647-58. PubMed ID: 87309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling to evaluate helical electrode designs.
    Cowley AW; Szlavik RB
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2029-32. PubMed ID: 22254734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anodally focused polarization of peripheral nerve allows discrimination of myelinated and unmyelinated fiber input to brainstem nuclei.
    Petruska JC; Hubscher CH; Johnson RD
    Exp Brain Res; 1998 Aug; 121(4):379-90. PubMed ID: 9746144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of surface electrode size on computer simulated surface motor unit potentials.
    Ferdjallah M; Wertsch JJ; Harris GF
    Electromyogr Clin Neurophysiol; 1999; 39(5):259-65. PubMed ID: 10421996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal conduction and electrical coupling in regenerating earthworm giant axons.
    Lyckman AW; Bittner GD
    Exp Neurol; 1992 Sep; 117(3):299-306. PubMed ID: 1397166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological correlates of rapid escape reflexes in intact earthworms, Eisenia foetida. I. Functional development of giant nerve fibers during embryonic and postembryonic periods.
    O'Gara B; Vining EP; Drewes CD
    J Neurobiol; 1982 Jul; 13(4):337-53. PubMed ID: 7108516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microneurography for the recording and selective stimulation of afferents: an assessment.
    Calancie BM; Stein RB
    Muscle Nerve; 1988 Jun; 11(6):638-44. PubMed ID: 3386673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.