These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22714718)

  • 1. Systematic evaluation of textural properties, activation temperature and gas uptake of Cu2(pzdc)2L [L = dipyridyl-based ligands] porous coordination pillared-layer networks.
    García-Ricard OJ; Silva-Martínez JC; Hernández-Maldonado AJ
    Dalton Trans; 2012 Aug; 41(29):8922-30. PubMed ID: 22714718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hysteretic adsorption of CO₂ onto a Cu₂(pzdc)₂(bpy) porous coordination polymer and concomitant framework distortion.
    Riascos-Rodríguez K; Schroeder AJ; Arend MR; Evans PG; Hernández-Maldonado AJ
    Dalton Trans; 2014 Jul; 43(28):10877-84. PubMed ID: 24901071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the Pore Size of Pillared-Layer Coordination Polymers Enables Highly Efficient Adsorption Separation of Acetylene from Ethylene.
    Zheng F; Guo L; Gao B; Li L; Zhang Z; Yang Q; Yang Y; Su B; Ren Q; Bao Z
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28197-28204. PubMed ID: 31310714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules.
    Seo J; Matsuda R; Sakamoto H; Bonneau C; Kitagawa S
    J Am Chem Soc; 2009 Sep; 131(35):12792-800. PubMed ID: 19681608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guest shape-responsive fitting of porous coordination polymer with shrinkable framework.
    Matsuda R; Kitaura R; Kitagawa S; Kubota Y; Kobayashi TC; Horike S; Takata M
    J Am Chem Soc; 2004 Nov; 126(43):14063-70. PubMed ID: 15506770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu(2)(pzdc)(2)(dpyg)](n) (pzdc= pyrazine-2,3-dicarboxylate; dpyg=1,2-Di(4-pyridyl)glycol).
    Kitaura R; Fujimoto K; Noro S; Kondo M; Kitagawa S
    Angew Chem Int Ed Engl; 2002 Jan; 41(1):133-5. PubMed ID: 12491462
    [No Abstract]   [Full Text] [Related]  

  • 7. Rational construction of 3D pillared metal-organic frameworks: synthesis, structures, and hydrogen adsorption properties.
    Chang Z; Zhang DS; Chen Q; Li RF; Hu TL; Bu XH
    Inorg Chem; 2011 Aug; 50(16):7555-62. PubMed ID: 21776953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination polymers assembled from angular dipyridyl ligands and CuII, CdII, CoII salts: crystal structures and properties.
    Huang Z; Song HB; Du M; Chen ST; Bu XH; Ribas J
    Inorg Chem; 2004 Feb; 43(3):931-44. PubMed ID: 14753813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of a series of cobalt(II) coordination polymers constructed from H2tbip and dipyridyl-based ligands.
    Ma LF; Wang LY; Wang YY; Batten SR; Wang JG
    Inorg Chem; 2009 Feb; 48(3):915-24. PubMed ID: 19117421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper(II) 5-methoxyisophthalate coordination polymers incorporating dipyridyl co-ligands: syntheses, crystal structures, and magnetic properties.
    Ma LF; Liu B; Wang LY; Li CP; Du M
    Dalton Trans; 2010 Mar; 39(9):2301-8. PubMed ID: 20162204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sol-gel synthesis of low-dimensional silica within coordination nanochannels.
    Uemura T; Hiramatsu D; Yoshida K; Isoda S; Kitagawa S
    J Am Chem Soc; 2008 Jul; 130(29):9216-7. PubMed ID: 18576625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. d(10)-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4'-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity.
    Lan YQ; Li SL; Fu YM; Xu YH; Li L; Su ZM; Fu Q
    Dalton Trans; 2008 Dec; (47):6796-807. PubMed ID: 19153627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bridge between pillared-layer and helical structures: a series of three-dimensional pillared coordination polymers with multiform helical chains.
    Xiao DR; Wang EB; An HY; Li YG; Su ZM; Sun CY
    Chemistry; 2006 Aug; 12(25):6528-41. PubMed ID: 16773662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic investigations on magneto-structural correlations of copper(II) coordination polymers based on organic ligands with mixed carboxylic and nitrogen-based moieties.
    Wriedt M; Zhou HC
    Dalton Trans; 2012 Apr; 41(14):4207-16. PubMed ID: 22246458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exceptional thermal stability in a supramolecular organic framework: porosity and gas storage.
    Yang W; Greenaway A; Lin X; Matsuda R; Blake AJ; Wilson C; Lewis W; Hubberstey P; Kitagawa S; Champness NR; Schröder M
    J Am Chem Soc; 2010 Oct; 132(41):14457-69. PubMed ID: 20866087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of metal-organic coordination polymers constructed from a bent dicarboxylate ligand: diversity of coordination modes, structures, and gas adsorption.
    Yang W; Lin X; Blake AJ; Wilson C; Hubberstey P; Champness NR; Schröder M
    Inorg Chem; 2009 Dec; 48(23):11067-78. PubMed ID: 19943692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flexible pro-porous coordination polymer: non-conventional synthesis and separation properties towards CO(2)/CH(4) mixtures.
    Barea E; Tagliabue G; Wang WG; Pérez-Mendoza M; Mendez-Liñan L; López-Garzon FJ; Galli S; Masciocchi N; Navarro JA
    Chemistry; 2010 Jan; 16(3):931-7. PubMed ID: 19938011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step adsorption on jungle-gym-type porous coordination polymers: dependence on hydrogen-bonding capability of adsorbates, ligand-substituent effect, and temperature.
    Uemura K; Yamasaki Y; Onishi F; Kita H; Ebihara M
    Inorg Chem; 2010 Nov; 49(21):10133-43. PubMed ID: 20929220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites.
    Lin X; Telepeni I; Blake AJ; Dailly A; Brown CM; Simmons JM; Zoppi M; Walker GS; Thomas KM; Mays TJ; Hubberstey P; Champness NR; Schröder M
    J Am Chem Soc; 2009 Feb; 131(6):2159-71. PubMed ID: 19159298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.