BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22714999)

  • 1. Targeted therapy: The new lease on life for acute promyelocytic leukemia, and beyond.
    Chen SJ; Zhou GB
    IUBMB Life; 2012 Aug; 64(8):671-5. PubMed ID: 22714999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute promyelocytic leukemia: a paradigm for differentiation therapy.
    Grimwade D; Mistry AR; Solomon E; Guidez F
    Cancer Treat Res; 2010; 145():219-35. PubMed ID: 20306254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From dissection of disease pathogenesis to elucidation of mechanisms of targeted therapies: leukemia research in the genomic era.
    Zhou GB; Li G; Chen SJ; Chen Z
    Acta Pharmacol Sin; 2007 Sep; 28(9):1434-49. PubMed ID: 17723177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute promyelocytic leukemia: new issues on pathogenesis and treatment response.
    Vitoux D; Nasr R; de The H
    Int J Biochem Cell Biol; 2007; 39(6):1063-70. PubMed ID: 17468032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leukemia-associated translocation products able to activate RAS modify PML and render cells sensitive to arsenic-induced apoptosis.
    Puccetti E; Beissert T; Güller S; Li JE; Hoelzer D; Ottmann OG; Ruthardt M
    Oncogene; 2003 Oct; 22(44):6900-8. PubMed ID: 14534537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagic degradation of an oncoprotein.
    Bøe SO; Simonsen A
    Autophagy; 2010 Oct; 6(7):964-5. PubMed ID: 20724820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute promyelocytic leukemia relapsing as secondary acute myelogenous leukemia with translocation t(3;21)(q26;q22) and RUNX1-MDS1-EVI1 fusion transcript.
    Park TS; Choi JR; Yoon SH; Song J; Kim J; Kim SJ; Kwon O; Min YH
    Cancer Genet Cytogenet; 2008 Dec; 187(2):61-73. PubMed ID: 19027486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guest editorial: acute promyelocytic leukemia: change from "highly fatal to highly curable" leukemia.
    Komatsu N
    Int J Hematol; 2014 Jul; 100(1):16-7. PubMed ID: 24912657
    [No Abstract]   [Full Text] [Related]  

  • 9. What is the role of arsenic in newly diagnosed APL?
    Tallman MS
    Best Pract Res Clin Haematol; 2008 Dec; 21(4):659-66. PubMed ID: 19041605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications.
    He LZ; Merghoub T; Pandolfi PP
    Oncogene; 1999 Sep; 18(38):5278-92. PubMed ID: 10498880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. APL, a model disease for cancer therapies?
    de Thé H; Chelbi-Alix MK
    Oncogene; 2001 Oct; 20(49):7136-9. PubMed ID: 11704841
    [No Abstract]   [Full Text] [Related]  

  • 12. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL.
    Altucci L; Rossin A; Raffelsberger W; Reitmair A; Chomienne C; Gronemeyer H
    Nat Med; 2001 Jun; 7(6):680-6. PubMed ID: 11385504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of PML in hematopoietic and leukemic stem cell maintenance.
    Nakahara F; Weiss CN; Ito K
    Int J Hematol; 2014 Jul; 100(1):18-26. PubMed ID: 24488785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia.
    Linggi B; Müller-Tidow C; van de Locht L; Hu M; Nip J; Serve H; Berdel WE; van der Reijden B; Quelle DE; Rowley JD; Cleveland J; Jansen JH; Pandolfi PP; Hiebert SW
    Nat Med; 2002 Jul; 8(7):743-50. PubMed ID: 12091906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BCR-ABL mediates arsenic trioxide-induced apoptosis independently of its aberrant kinase activity.
    Puccetti E; Güller S; Orleth A; Brüggenolte N; Hoelzer D; Ottmann OG; Ruthardt M
    Cancer Res; 2000 Jul; 60(13):3409-13. PubMed ID: 10910048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular targets and the treatment of myeloid leukemia.
    Ikeda A; Shankar DB; Watanabe M; Tamanoi F; Moore TB; Sakamoto KM
    Mol Genet Metab; 2006 Jul; 88(3):216-24. PubMed ID: 16678459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in therapies for acute promyelocytic leukemia.
    Kamimura T; Miyamoto T; Harada M; Akashi K
    Cancer Sci; 2011 Nov; 102(11):1929-37. PubMed ID: 21790894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting of AML1-ETO in t(8;21) leukemia by oridonin generates a tumor suppressor-like protein.
    Zhen T; Wu CF; Liu P; Wu HY; Zhou GB; Lu Y; Liu JX; Liang Y; Li KK; Wang YY; Xie YY; He MM; Cao HM; Zhang WN; Chen LM; Petrie K; Chen SJ; Chen Z
    Sci Transl Med; 2012 Mar; 4(127):127ra38. PubMed ID: 22461642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute promyelocytic leukemia (AML-M3)--Part 2: Molecular defect, DNA diagnosis, and proposed models of leukemogenesis and differentiation therapy.
    Randolph TR
    Clin Lab Sci; 2000; 13(2):106-16. PubMed ID: 11066449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Acute promyelocytic leukemia, histone deacetylase, and response to retinoids].
    Jeanteur P
    Bull Cancer; 1998 Apr; 85(4):301-3. PubMed ID: 9752292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.