These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22715328)

  • 1. Scale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task.
    Ciuciu P; Varoquaux G; Abry P; Sadaghiani S; Kleinschmidt A
    Front Physiol; 2012; 3():186. PubMed ID: 22715328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-similarity and multifractality in human brain activity: A wavelet-based analysis of scale-free brain dynamics.
    La Rocca D; Zilber N; Abry P; van Wassenhove V; Ciuciu P
    J Neurosci Methods; 2018 Nov; 309():175-187. PubMed ID: 30213548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially regularized multifractal analysis for fMRI data.
    Ciuciu P; Wendt H; Combrexelle S; Abry P
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3769-3772. PubMed ID: 29060718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks.
    Ciuciu P; Abry P; He BJ
    Neuroimage; 2014 Jul; 95():248-63. PubMed ID: 24675649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scale-Free Coupled Dynamics in Brain Networks Captured by Bivariate Focus-Based Multifractal Analysis.
    Stylianou O; Racz FS; Eke A; Mukli P
    Front Physiol; 2020; 11():615961. PubMed ID: 33613302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposing Multifractal Crossovers.
    Nagy Z; Mukli P; Herman P; Eke A
    Front Physiol; 2017; 8():533. PubMed ID: 28798694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI.
    Wink AM; Bullmore E; Barnes A; Bernard F; Suckling J
    Hum Brain Mapp; 2008 Jul; 29(7):791-801. PubMed ID: 18465788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
    Keinänen T; Rytky S; Korhonen V; Huotari N; Nikkinen J; Tervonen O; Palva JM; Kiviniemi V
    J Neurosci Res; 2018 Oct; 96(10):1689-1698. PubMed ID: 29761531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifractal Functional Connectivity Analysis of Electroencephalogram Reveals Reorganization of Brain Networks in a Visual Pattern Recognition Paradigm.
    Stylianou O; Racz FS; Kim K; Kaposzta Z; Czoch A; Yabluchanskiy A; Eke A; Mukli P
    Front Hum Neurosci; 2021; 15():740225. PubMed ID: 34733145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ICA on sensor or source data: A comparison study in deriving resting state networks from EEG.
    Chuang Li ; Han Yuan ; Urbano D; Yoon-Hee Cha ; Lei Ding
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3604-3607. PubMed ID: 29060678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain.
    Fransson P; Metsäranta M; Blennow M; Åden U; Lagercrantz H; Vanhatalo S
    Cereb Cortex; 2013 Mar; 23(3):638-46. PubMed ID: 22402348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delay discounting is predicted by scale-free dynamics of default mode network and salience network.
    Chen Z; Guo Y; Feng T
    Neuroscience; 2017 Oct; 362():219-227. PubMed ID: 28844008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults.
    Mowinckel AM; Espeseth T; Westlye LT
    Neuroimage; 2012 Nov; 63(3):1364-73. PubMed ID: 22992492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting intrinsic functional networks with feature-based group independent component analysis.
    Calhoun VD; Allen E
    Psychometrika; 2013 Apr; 78(2):243-59. PubMed ID: 25107615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifractal Dynamic Functional Connectivity in the Resting-State Brain.
    Racz FS; Stylianou O; Mukli P; Eke A
    Front Physiol; 2018; 9():1704. PubMed ID: 30555345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
    Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.