These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 2271552)

  • 1. Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA.
    Parente RA; Nir S; Szoka FC
    Biochemistry; 1990 Sep; 29(37):8720-8. PubMed ID: 2271552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of phospholipid composition on an amphipathic peptide-mediated pore formation in bilayer vesicles.
    Nicol F; Nir S; Szoka FC
    Biophys J; 2000 Feb; 78(2):818-29. PubMed ID: 10653794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide.
    Nicol F; Nir S; Szoka FC
    Biophys J; 1996 Dec; 71(6):3288-301. PubMed ID: 8968598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-dependent fusion of phosphatidylcholine small vesicles. Induction by a synthetic amphipathic peptide.
    Parente RA; Nir S; Szoka FC
    J Biol Chem; 1988 Apr; 263(10):4724-30. PubMed ID: 2450874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of a pH-sensitive peptide with membrane vesicles: role of amino acid sequence.
    Parente RA; Nadasdi L; Subbarao NK; Szoka FC
    Biochemistry; 1990 Sep; 29(37):8713-9. PubMed ID: 2271551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface aggregation and membrane penetration by peptides: relation to pore formation and fusion.
    Nir S; Nicol F; Szoka FC
    Mol Membr Biol; 1999; 16(1):95-101. PubMed ID: 10332743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation of the pore-forming peptide GALA in POPC vesicles determined by a BODIPY-avidin/biotin binding assay.
    Nicol F; Nir S; Szoka FC
    Biophys J; 1999 Apr; 76(4):2121-41. PubMed ID: 10096907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-dependent bilayer destabilization by an amphipathic peptide.
    Subbarao NK; Parente RA; Szoka FC; Nadasdi L; Pongracz K
    Biochemistry; 1987 Jun; 26(11):2964-72. PubMed ID: 2886149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-forming peptides induce rapid phospholipid flip-flop in membranes.
    Fattal E; Nir S; Parente RA; Szoka FC
    Biochemistry; 1994 May; 33(21):6721-31. PubMed ID: 8204607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the leakage induced on lipid model membranes by the hemolytic protein sticholysin II from the sea anemone Stichodactyla helianthus.
    de los Rios V; Mancheño JM; Lanio ME; Oñaderra M; Gavilanes JG
    Eur J Biochem; 1998 Mar; 252(2):284-9. PubMed ID: 9580155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of peptides with liposomes: pore formation and fusion.
    Nir S; Nieva JL
    Prog Lipid Res; 2000 Mar; 39(2):181-206. PubMed ID: 10775764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a pH-sensitive pore-forming peptide with improved performance.
    Haas DH; Murphy RM
    J Pept Res; 2004 Jan; 63(1):9-16. PubMed ID: 14984568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores.
    Wimley WC; Selsted ME; White SH
    Protein Sci; 1994 Sep; 3(9):1362-73. PubMed ID: 7833799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Characterization of a Cation-Selective, Self-Assembled Peptide Pore in Planar Phospholipid Bilayers.
    Deplazes E; Hartmann LM; Cranfield CG; Garcia A
    J Phys Chem Lett; 2020 Oct; 11(19):8152-8156. PubMed ID: 32902292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of lipid vesicle contents by an antibacterial cecropin A-melittin hybrid peptide.
    Mancheño JM; Oñaderra M; Martínez del Pozo A; Díaz-Achirica P; Andreu D; Rivas L; Gavilanes JG
    Biochemistry; 1996 Jul; 35(30):9892-9. PubMed ID: 8703963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of pore formation in stearoyl-oleoyl-phosphatidylcholine vesicles by pH sensitive cell penetrating peptide GALA.
    James HP; Jadhav S
    Chem Phys Lipids; 2021 Nov; 241():105139. PubMed ID: 34560061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible surface aggregation in pore formation by pardaxin.
    Rapaport D; Peled R; Nir S; Shai Y
    Biophys J; 1996 Jun; 70(6):2502-12. PubMed ID: 8744290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides.
    Pokorny A; Almeida PF
    Biochemistry; 2004 Jul; 43(27):8846-57. PubMed ID: 15236593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles.
    Rafalski M; Ortiz A; Rockwell A; van Ginkel LC; Lear JD; DeGrado WF; Wilschut J
    Biochemistry; 1991 Oct; 30(42):10211-20. PubMed ID: 1931950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.