BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 2271561)

  • 1. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of a mismatched GA decamer oligodeoxyribonucleotide duplex.
    Nikonowicz EP; Gorenstein DG
    Biochemistry; 1990 Sep; 29(37):8845-58. PubMed ID: 2271561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of an oligodeoxyribonucleotide duplex refined via a hybrid relaxation matrix procedure.
    Powers R; Jones CR; Gorenstein DG
    J Biomol Struct Dyn; 1990 Oct; 8(2):253-94. PubMed ID: 2268403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of distortions in the deoxyribose phosphate backbone conformation of duplex oligodeoxyribonucleotide dodecamers containing GT, GG, GA, AC, and GU base-pair mismatches on 31P NMR spectra.
    Roongta VA; Jones CR; Gorenstein DG
    Biochemistry; 1990 Jun; 29(22):5245-58. PubMed ID: 2383544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of an extrahelical adenosine tridecamer oligodeoxyribonucleotide duplex.
    Nikonowicz E; Roongta V; Jones CR; Gorenstein DG
    Biochemistry; 1989 Oct; 28(22):8714-25. PubMed ID: 2557907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of distortions in the phosphate backbone conformation of six related octanucleotide duplexes on CD and 31P NMR spectra.
    el antri S; Bittoun P; Mauffret O; Monnot M; Convert O; Lescot E; Fermandjian S
    Biochemistry; 1993 Jul; 32(28):7079-88. PubMed ID: 8393703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assignments of 31P NMR resonances in oligodeoxyribonucleotides: origin of sequence-specific variations in the deoxyribose phosphate backbone conformation and the 31P chemical shifts of double-helical nucleic acids.
    Gorenstein DG; Schroeder SA; Fu JM; Metz JT; Roongta V; Jones CR
    Biochemistry; 1988 Sep; 27(19):7223-37. PubMed ID: 3207672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-dependent variations in the 31P NMR spectra and backbone torsional angles of wild-type and mutant Lac operator fragments.
    Schroeder SA; Roongta V; Fu JM; Jones CR; Gorenstein DG
    Biochemistry; 1989 Oct; 28(21):8292-303. PubMed ID: 2605186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of a covalent CPI-CDPI2-oligodeoxyribonucleotide decamer complex.
    Powers R; Gorenstein DG
    Biochemistry; 1990 Oct; 29(42):9994-10008. PubMed ID: 2271635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional 1H and 31P NMR spectra of a decamer oligodeoxyribonucleotide duplex and a quinoxaline ((MeCys3, MeCys7)(TANDEM) drug duplex complex.
    Powers R; Olsen RK; Gorenstein DG
    J Biomol Struct Dyn; 1989 Dec; 7(3):515-56. PubMed ID: 2627298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D 1H and 31P NMR spectra and distorted A-DNA-like duplex structure of a phosphorodithioate oligonucleotide.
    Cho Y; Zhu FC; Luxon BA; Gorenstein DG
    J Biomol Struct Dyn; 1993 Dec; 11(3):685-702. PubMed ID: 8129879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of nucleic acid backbone conformation by 1H NMR.
    Kim SG; Lin LJ; Reid BR
    Biochemistry; 1992 Apr; 31(14):3564-74. PubMed ID: 1373647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a 12-mer duplex d(GGCGGAGTTAGG).d(CCTAACTCCGCC) containing a highly reactive (+)-CC-1065 sequence by 1H and 31P NMR, hydroxyl-radical footprinting, and NOESY restrained molecular dynamics calculations.
    Lin CH; Hill GC; Hurley LH
    Chem Res Toxicol; 1992; 5(2):167-82. PubMed ID: 1322736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assignment of phosphorus-31 and nonexchangeable proton resonances in a symmetrical 14 base pair lac pseudooperator DNA fragment.
    Schroeder SA; Fu JM; Jones CR; Gorenstein DG
    Biochemistry; 1987 Jun; 26(13):3812-21. PubMed ID: 2820476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR solution structure of a nonanucleotide duplex with a dG mismatch opposite a 10S adduct derived from trans addition of a deoxyadenosine N6-amino group to (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene: an unusual syn glycosidic torsion angle at the modified dA.
    Yeh HJ; Sayer JM; Liu X; Altieri AS; Byrd RA; Lakshman MK; Yagi H; Schurter EJ; Gorenstein DG; Jerina DM
    Biochemistry; 1995 Oct; 34(41):13570-81. PubMed ID: 7577946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural studies of the 5'-phenazinium-tethered matched and G-A-mismatched DNA duplexes by NMR spectroscopy.
    Maltseva T; Sandström A; Ivanova IM; Sergeyev DS; Zarytova VF; Chattopadhyaya J
    J Biochem Biophys Methods; 1993 May; 26(2-3):173-236. PubMed ID: 8389781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of [d(ATGAGCGAATA)]2. Adjacent G:A mismatches stabilized by cross-strand base-stacking and BII phosphate groups.
    Chou SH; Cheng JW; Reid BR
    J Mol Biol; 1992 Nov; 228(1):138-55. PubMed ID: 1447778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hairpin loops consisting of single adenine residues closed by sheared A.A and G.G pairs formed by the DNA triplets AAA and GAG: solution structure of the d(GTACAAAGTAC) hairpin.
    Chou SH; Zhu L; Gao Z; Cheng JW; Reid BR
    J Mol Biol; 1996 Dec; 264(5):981-1001. PubMed ID: 9000625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of a DNA dodecamer containing the anti-neoplastic agent arabinosylcytosine: combined use of NMR, restrained molecular dynamics, and full relaxation matrix refinement.
    Schweitzer BI; Mikita T; Kellogg GW; Gardner KH; Beardsley GP
    Biochemistry; 1994 Sep; 33(38):11460-75. PubMed ID: 7918360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of a GA mismatch DNA sequence, d(CCATGAATGG)2, determined by 2D NMR and structural refinement methods.
    Greene KL; Jones RL; Li Y; Robinson H; Wang AH; Zon G; Wilson WD
    Biochemistry; 1994 Feb; 33(5):1053-62. PubMed ID: 8110736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-13 NMR in conformational analysis of nucleic acid fragments. 2. A reparametrization of the Karplus equation for vicinal NMR coupling constants in CCOP and HCOP fragments.
    Lankhorst PP; Haasnoot CA; Erkelens C; Altona C
    J Biomol Struct Dyn; 1984 Jun; 1(6):1387-405. PubMed ID: 6400827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.